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Suppose you had a family of related proteins that were aligned in a multiple sequence
alignment Q. Suppose that you wanted to search a database of protein sequences to find
additional proteins similar to those in Q. This is just like the task that BLAST performs,
but the query is a multiple sequence alignment rather than a single sequence. The goal of
this section is to show how hidden Markov models can be specialized for this task.

The specialized version is called a profile HMM. In Section 1 we will show how to construct
a profile HMM from a multiple sequence alignment. In Section 2 we will show how to use
the profile HMM to search a database of sequences.

1 Constructing a profile HMM from a multiple sequence align-
ment

If the multiple sequence alignment Q were ungapped, we could use the very simple HMM

Begin −→M1 −→ · · · −→Mj −→ · · · −→ML −→ End

where L is the number of columns in the alignment Q, all transition probabilities are 1, and
Mj has emission probability eMj

(a) equal to the frequency of residue a in column j of Q.

To accommodate gaps in Q, we generalize this simple HMM to the profile HMM H shown
in Figure 5.2 of Durbin et al. Squares (other than Begin and End) are called “match states”,
diamonds are “insert states”, and circles are “delete states”. There are no emissions from
delete states, nor from Begin or End.

In order to parameterize the HMM H according to Q, first choose the number L of match
states. A simple rule here is to let L be the number of alignment columns that contain fewer
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gap characters than nongap characters. See Figure 5.3 of Durbin et al. for an example,
where the starred columns are chosen to correspond to the match states.

Having now fixed the topology of H to have L match states, L + 1 insert states, and L
delete states configured as in Figure 5.2, the next step is to train the parameters of H from
Q. Each row of Q determines a path and emissions of H:

1. A nongap character r in a starred column corresponds to going to the next match state
and emitting r.

2. A nongap character r in a nonstarred column corresponds to going to the next insert
state and emitting r.

3. A gap character in a starred column corresponds to going to the next delete state.

4. A gap character in a nonstarred column is ignored.

Let Ajk be the total number of times the rows of Q cause H to traverse the directed edge
(j, k), and let Ej(b) be the total number of times the rows of Q cause H to emit b when in
state j. Add pseudocounts as described in Section 3.4 of the Markov Models handout. Then
set

ajk =
Ajk∑
k′ Ajk′

ej(b) =
Ej(b)∑
b′ Ej(b′)

exactly as described in that section.

2 Searching a sequence database with a profile HMM

There are two possible algorithms for evaluating how well a sequence X from the database
matches the HMM H. We could use the Viterbi algorithm to find the most probable align-
ment of X with H together with its probability, or we could use the forward algorithm to
calculate the posterior probability Pr(X | H) of X summed over all paths.

In either case, what we really want to calculate is the log likelihood ratio of this probability
with respect to the background probability of the sequence X, which is qX1qX2 . . . qXL

, where
qr is the background frequency of residue r in the database. The recurrences for either
the Viterbi or the forward algorithm can be modified to calculate this log likelihood ratio
directly. For example, Equations (5.1) in Durbin et al. provide the recurrences to compute
the Viterbi log likelihood ratios. You can derive these similarly to the derivation of the
Viterbi recurrence given in Section 3.2 of the handout on Markov Models.
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An important benefit of modifying the recurrence to directly compute the log likelihood
ratio is that this avoids the underflow problem of computing the Viterbi probability, which
is the product of 2L probabilities and is likely to be an exponentially small number.

Figure 5.5 from Durbin et al. provides an example. A profile HMM was constructed from
300 globin proteins, and then the SWISS-PROT database of proteins was searched with the
forward algorithm. The vertical axis shows the log likelihood ratio score, with a point in the
graph for each protein in the database. The graph shows a clear separation of globins from
non-globins.

Finally, for every good matching sequence X, we would like to add X to the multiple
sequence alignment Q of the protein family. The simplest way is to use the Viterbi path of
X in H, which dictates how to align X to Q.
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