
 Foodwatch
Sean Miller; Group Manager
Brandon Zahl; Designer
Mike Silver; User Testing
Kyle Hornberger; Writer
CSE 440; Autumn 2009
http://cs.washington.edu/education/courses/cse440/09au/projects/foodwatch/documents/Interactiv
e_Prototype.pdf

Problem and Solution Overview

Wasted food costs American households approximately $43 billion a year. To prevent this, we are
developing a better way for people to be reminded and keep track of their food in terms of quantities
and freshness, so that they may improve their food buying habits. Foodwatch will target these issues
by giving the user an inventory of their food, reminding them when their food will spoil soon, tracking
their food expenses, and informing them of ways they can store their food to increase its longevity.

Our goal is to provide tools for customers to police their own food storage habits, guide their
purchases, and motivate them to save money and reduce food waste.

Tasks

In this phase of design, our tasks went through some revision. Our previous first and second tasks
were very similar, and while Foodwatch would ideally include all of them to aid the customer in
policing their food waste, we decided to mix things up a bit. Our new set of tasks shows more
functionality in the customer's improvement of food management over time, and is better oriented
towards long-term goals.

Task 1: Changing update settings [Easy]
To update you on what food you need to use soon, Foodwatch sends out a periodic email containing
all items in your inventory that should be used promptly. In this task, you need to set the email
address and frequency in the Settings screen, and then review the email sent. These settings would
also dictate how much is contained in the email - a weekly email would contain all food that will spoil
in the coming week, while a daily email would simply contain information about the next day. This
was previously our second task.

Task 2: Determining what quantity of milk to buy to minimize waste [Medium]
This, our new task, focuses around having the customer review their purchase and use history. You are
at the store, about to purchase milk, and must decide how much to purchase. Foodwatch has two
sections to address this: both a quick notification to you (as a popup dialog from your shopping list)
and a full-page item stats screen that displays a 12 month purchase and use history compared to the
average of all Foodwatch users.

http://cs.washington.edu/education/courses/cse440/09au/projects/foodwatch/documents/interactive-prototype.pdf
http://cs.washington.edu/education/courses/cse440/09au/projects/foodwatch/documents/interactive-prototype.pdf

Task 3: Finding a recipe for dinner with food you have at home [Hard]
As before, this task combines all three of Foodwatch's major screens to demonstrate how more
information about your food can be used to make complex decisions. While at the store, you need to
find something to make for dinner. Using Foodwatch, you can do this by looking up a recipe that
contains items you already have at home. This will hopefully motivate you to use food you have
previously purchased rather than buying more food by making these decisions easier and quicker.

Interface Revision

Obviously our biggest change from our low-fidelity prototype to
the interactive prototype was the addition of our new second
task, which required new screens (Figure 1) and new prototype
functionality. We revised our shopping list layout to include a
waste warning, and after user testing (Appendix A: Figures 2 and
3) our new task revised it even further to clean it up. After testing
we decided to section the shopping list with headers to partition
items the user has added, items that Foodwatch’s AI has
automatically suggested, and items whose purchase quantity
should be reduced (our new warning feature) from each other.
More good feedback came in the suggestion to give a weekly
summary of wasted food, which we have decided to package into
our email reminders.

Apart from the new sections of our interface, we have finally
settled on a good representation of freshness (Figure 2). Blocks of
color didn’t work well for our initial design, and when we revised
that to a system of freshness bars in our low-fidelity prototype, it
was often confused for quantity of food remaining rather than
freshness. Our new approach uses a colored stopwatch to
symbolize time as well as freshness.

We reworked our approach with the settings screen, since the
only necessary variables to set are email address and frequency (time of the email is mostly
irrelevant), since our time dialog was confusing to some people.

Figure 2: New freshness meter

Figure 1: Item statistics

In our low-fidelity prototype, we also had problems with users’
interpretations of the recipe screen, so we clarified that by reorganizing
it. The list of ingredients (Figure 3) is now displayed with a much clearer
distinction between items you have at home and items you will need to
buy at the store. We also added in the option to not push all of the
required ingredients to the shopping list, as one of our user testing
episodes suggested to us.
Some of our user testing feedback was addressed purely by the
transition to a higher-fidelity prototype, which has more easily
identifiable buttons and readable text.

Prototype Overview

Overview of Implementation
From the beginning, we designed Foodwatch with the g1/Android architecture in mind, so naturally
our interactive prototype is represented within the g1 frame. This enacts the feel of really using it on a
phone as opposed to a web interface. While the phone includes Back, Home, and Menu buttons, since
our prototype's main interface is only one layer deep, we utilize the Menu button to bring up the
standard Android menu and navigate between Foodwatch functions.

A couple of our screens do, however, have back buttons on the pane so that we did not have to rely on
the g1's button. In addition, our prototype simulates using the g1 by starting the user on the Android
desktop (Appendix A: Figure 1), showing that Foodwatch launches straight to the point with the
inventory screen.

We used Javascript/JQuery and HTML to build the interface such that we could overlay images (for
checkboxes and the menu screen) relatively easily while also being able to build the prototype quickly.

Figure 3: Recipe ingredients

Scenarios
Scenario 1: Set an appropriate Time/E-mail For the Status Report
The G1's menu button can be pressed at to pull up a menu to jump to different pages (Figure 4 and 5).

A user can then select Settings to jump to the Settings page. From the settings page, the user can
change the default e-mail and how often the e-mail is sent (Figures 6 and 7).

Figure 4: Inventory Figure 5: Inventory with menu

Figure 6: Settings
Figure 7: Highlighted settings

Scenario 2: Figuring Out Recommended Amounts of Food to Purchase
From the Shopping List, Foodwatch notifies you of often spoiled foods. Pressing on the warning
symbol then pulls up a pop-up (Figures 8 and 9).

The pop-up suggests a recommended amount of the product to buy based on your usage habits.
Clicking on 'View Item Stats' takes you an individual stats page (Figures 10 and 11).

Figure 8: Shopping list Figure 9: Warning pop-up

Figure 10: Warning pop-up
highlighted

Figure 11: Item statistics

Scenario 3: Generating new Shopping List Items Based off Your Inventory/Recipes
A customer can check their inventory to see how fresh food is and select items to generate a recipe
(Figure 12 and 13).

The Recipes Screen provides such information as preparation time and the rating of the recipe.
Pressing on a specific recipe will bring up a more detailed single recipe screen (Figure 14 and 15).

Figure 12: Inventory

Figure 13: Inventory items selected

Figure 14: Recipes Figure 15: Single recipe

From the single recipe screen you can find out additional information about the recipe, such as
ingredients. From the ingredients screen you can see what additional items you need to make this
recipe and add selected items to your shopping list (Figure 16, 17 and 18).

Tools
Helpful:
The primary tools used on the interactive prototype were Photoshop, the JQuery JavaScript library,
and HTML/CSS. Photoshop helped in the basic graphic design of the screens. The ability to show/hide
layers in Photoshop allowed us to break up the screens and generate configurations of smaller
components. The grouping of layers also facilitated an ease of organizing and grouping by section and
made it possible to work on the whole prototype within a single file. Each screen was sliced and
exported to HTML. JQuery was used to detect clicks and do swapping of screens based on input.
Not Helpful:
On the other hand, the tools were obviously not designed for this specific situation. It felt a little like
we were retrofitting them to our needs. A prototyping program for linking images based on where a
user clicked would be better, but due to time constraints it was better to go with what we knew rather
than research and learn completely new software. In the end, the results produced with our selected
tools were definitely adequate and appropriate for this type of prototype.

Figure 16: Ingredients Figure 17: Adding ingredients Figure 18: Shopping list

Omitted Design Ideas
Since this is a 'golden path' prototype, cuts had to be made for the sake of the time constraints we
had. Most relevant to our current design is the omission of the global statistics page that was part of
our original concept (Figures 19 and 20). This is meant to give the user an aggregate of all their food
waste data. Since we're already covering single item statistics, it's a natural and useful extension of
that.

As stated previously, we ended up cutting one of our easier tasks in this step of the design process,
after realizing we had two very similar tasks. Still very important to Foodwatch's mission are the
notifications (Figure 21) when you store food improperly, however they don't form a detailed enough
task with the interface and weren't nifty enough to warrant inclusion in our interactive prototype. A
couple of the ideas we kicked around (but never really sketched out) were a disclaimer page, multiple
custom shopping lists, and tagging of food items (so you could mark something as “Timmy's Snacks” if
you wanted).

Figure 19: Global stats sketch Figure 20: Global stats graph

Figure 21: Notification

Wizard of Oz Trickery!
As stated from the beginning, Foodwatch depends on a 'magic refrigerator' that can detect what you
put into it and how much/when. In our interactive prototype, we simply have a pre-generated
inventory for demonstration purposes.

As well, the fridge would work in conjunction with the Foodwatch AI to determine when the customer
ran out of something (especially something they regularly use, such as milk) and automatically add it
to their shopping list under “Suggested Items”. Again, we don't yet have such an advanced refrigerator,
so we have to use predetermined data.

Finally, on the same principle, we don't have a fully implemented search feature for recipes, or even
for any combination of items in the inventory besides pasta and chicken. We have a premade list of
recipes, and only one of those recipes will actually bring up a valid single recipe screen.

Appendix A: Prototype Screenshots

Figure 1: Opening screen

Figure 2: Tested Popup Figure 3: Tested Stats Screen

Appendix B: Task 2 Testing Notes

Since we significantly changed our tasks around from the low-fidelity prototype to now, we went out
and tested our ideas against a typical customer. Here are the results.

Lewis- Age 26

- completed the task with no problems

Suggestions:

- highlight the shopping list row containing the warning

- separate out the three shopping lists

- weekly summary of wasted food

- less than 3 taps to any part of the app

- swipe across an item on a list to see more info, such as stats

- color code rows of a list

