
1

Introduction to Database
Systems

CSE 444

Lecture #10
Feb 7 2001

2

Announcements
Course Project MileStone2 due today
Change in Deadlines

Homework#3 due on Feb 21
Project Report now due on Feb 28

HW#2 has been linked
Constraints, Triggers, Security, Transactions

MidTerm grading in progress
Feedback?…

Concurrency Control

Reading: Sec 7.2, 9.1-9.3,9.4.1,
9.4.2,9.5, 9.6.3,10.3.1,10.3.2

4

Why Have Concurrent
Processes?

Better throughput, response time
Done via better utilization of resources:

While one process is doing a disk read, another can
be using the CPU or reading another disk.

DANGER DANGER! Concurrency could lead
to incorrectness!

Must carefully manage concurrent data access.
There’s (much!) more here than the usual OS tricks!

5

Transactions

Basic concurrency/recovery concept: a
transaction (Xact).

A sequence of many actions which are
considered to be one atomic unit of work.

DBMS “actions”:
(disk) reads, (disk) writes

6

The ACID Properties

A tomicity: All actions in the Xact happen, or
none happen

Account Transfer, Withdraw cash from ATM

C onsistency: If each Xact is consistent, and
the DB starts consistent, it ends up consistent

I solation: Execution of one Xact is isolated
from that of other Xacts

Account Withdrawal

D urability: If a Xact commits, its effects persist
Electronic Fund Transfer

2

7

Passing the ACID Test

Concurrency Control
Guarantees Isolation

Logging and Recovery
Guarantees Atomicity and Durability.

We’ll do C. C. first:
What is acceptable behavior?
What problems could arise?
How do we guarantee acceptable behavior?

8

Notation

T1: Read(A,t), t:=t+100, Write(A,t),
Read(B,t), t:= t + 300, Write(B,t)
T2: Read(A,s), s:=s*2, Write(A,s),
Read(B,s), S:=s*2, Write(B,s)
T1: R1(A), W1(A), R1(B), W1(B)
T2: R2(A), W2(A), R2(B), W2(B)
What kind of interleaving makes sense?

9

Schedules

Schedule: An interleaving of actions
from a set of Xacts, where the actions
of any 1 Xact are in the original order.

Represents some actual sequence of
database actions.
Example: R1(A), W1(A), R2(B), W2(B),
R1(C), W1(C)
In a complete schedule, each Xact ends in
commit or abort.

Initial State + Schedule → Final State

T1 T2

R(A)

W(A)

R(B)

W(B)

R(C)

W(C)

10

Acceptable Schedules

One sensible “isolated, consistent” schedule:
Run Xacts one at a time, in a series.
This is called a serial schedule.
NOTE: Different serial schedules can have different
final states; all are “OK” -- DBMS makes no guarantees
about the order in which concurrently submitted Xacts
are executed.

Serializable schedules:
Final state is what some serial schedule would have
produced.
Aborted Xacts are not part of schedule; ignore them for
now (they are made to `disappear’ by using logging).

11

Serializability
Violations

Two actions may conflict when 2
xacts access the same item:
Dirty Read (WR Conflict)

Result is not equal to any serial
execution!
T2 reads what T1 wrote, but it
shouldn’t have!!
T1 still active!

T1 T2

R(A)

W(A)

R(A)

W(A)

R(B)

W(B)

Commit

R(B)

W(B)

Commit

transfer
$100 from
A to B

add 6%
interest to
A & B

Database is
inconsistent!

12

Example: Dirty Read

T1: Transfer $100 from A to B
T2: Increment A and B by 6%
Consider schedule
R1(A) W1(A) R2(A) R2(B) W2(A) W2(B)
R1(B) W1(B)

3

13

Serializability
Violations (Contd.)

Unrepeatable Read (RW Conflict)

Lost Update (WW Conflict)

T1: R(A), R(A), C
T2: R(A), W(A), C

T1: W(A), W(B), C
T2: W(A), W(B), C

14

Examples: Unrepeatable
Read/Lost Update

Unrepeatable Read
T1: Increment A; T2: Decrement A
R1(A) R2(A) W1(A) W2(A)

Lost Update/Blind Write
T1: Set salary of A,B to $10000
T2: Set salary of A,B to $30000
W1(A) W2(A) W2(B) W1(B)

15

Checking for Serializability
Conflict: A pair of consecutive actions in a
schedule such that

If their order is changed, then at least one of the
transactions may change

Non Conflicting Swaps
Unless actions within the same transaction
Unless actions on the same object
Unless one of the actions is a Write
⌧WW: Wi(X), Wj(X)
⌧RW: Ri(X), Wj(X)

16

Conflict Serializability

Guarantees serializability
2 schedules are conflict equivalent if:

they have the same lists of actions, and
each pair of conflicting actions is ordered in the same
way.

A schedule is conflict serializable if it is conflict
equivalent to a serial schedule.

Note: Some serializable schedules are not conflict
serializable!

17

Example

Example 9.6 from Text
R1(A), W1(A), R2(A), W2(A), R1(B),
W1(B), R2(B), W2(B)

18

Example

All serializable schedules do not need to
be conflict serializable
Page 478 of Text
S1: W1(Y), W1(X), W2(Y), W2(X), W3(X)
S2: W1(Y), W2(Y), W2(X), W1(X), W3(X)

4

19

Test for Conflict Serializability:
Precedence Graph

A Precedence (or Serializability) graph:
Node for each committed Xact.
Arc from Ti to Tj if there is an action of Ti precedes
and “conflicts” with an action of Tj
⌧Ai before Aj
⌧Ai and Aj involve the same database element
⌧Either Ai or Aj is a WRITE

Theorem 1: A schedule is conflict serializable iff
its precedence graph is acyclic.

20

Example: Precedence
Graph

T1 transfers $100 from A to B, T2 adds
6%

R1(A), W1(A), R2(A), W2(A), R2(B), W2(B),
R1(B), W1(B)

T1 T2

21

Example: Precedence
Graph

R1(A), W1(A), R2(A), W2(A), R1(B),
W1(B), R2(B), W2(B)
Is it conflict serializable?

22

Isolation Level

Captures visibility across transactions
Correct/Strongest Isolation Level

Serializable
Implemented through conflict serializability
⌧Tested using precedence graph

Weaker Isolation level
Dirty Read (RW)
Unrepeatable Read (WR)

Choice of isolation level exposed through SQL
Discussed later in the lecture

23

Implementation of
Serializability

24

Locking

Concurrency control usually done via locking.
Lock info maintained by a “lock manager”:

Stores (XID, RID, Mode) triples.
⌧Mode ∈ {S,X}
⌧S for readers; X for writers

Steps
Acquire Lock
⌧If a Xact can’t get a lock, it is suspended on a wait queue

Release Lock

This is a simplistic view

5

25

Granting Lock Requests:
Lock Compatibility

-- S X

--

S

X

√

√

√

√ √

√

LOCK REQUESTED

L
O
C
K

H
E
L
D

26

Two-Phase Locking (2PL)

2PL:
If T wants to read an object, first obtains an
S lock.
If T wants to modify an object, first obtains X
lock.
If T releases any lock, it can acquire no new
locks!

Locks are automatically obtained by DBMS.
Guarantees serializability

27

Growing and Shrinking
Phases of 2PL

lock point

growing phase

shrinking
phase

Time

No. of Locks

28

Strict 2PL

Strict 2PL:
If T wants to read an object, first obtains an
S lock.
If T wants to modify an object, first obtains X
lock.
Hold all locks until end of transaction.

Guarantees serializability

Time

of
locks

29

Conflict Serializability &
2PL

Theorem 2: 2PL ensures that the
precedence graph of the schedule
will be acyclic

Guarantees conflict serializability (and
serializability)

Strict 2PL improves on this by ensuring
recoverable schedules

More on Recovery in the next lecture

30

Example

T1: R1(A), R1(B), W1(B)
T2: R2(A), R2(B)
Schedule:
S1(A), R1(A), S2(A), R2(A), S2(B), R2(B),
X1(B)-denied, U2(A), U2(B), X1(B), R1(B),
W1(B), U1(A), U2(B)

6

31

Deadlocks

Deadlock: A set of lock requests waiting
for each other
System intervention necessary
2PL cannot prevent deadlocks
Break deadlock by aborting one of the
transactions

32

Example

Consider the sequence of actions:
R1(X) R2(Y) W2(X) W1(Y)

33

Detecting Deadlock

Timeout
Graph-Based Detection (Chapter 10.3.1-.2)

Build a waits-for graph
⌧Node = Transaction
⌧Add Edge = Waiting situation; edge(T1,T2) if T1 is waiting

on a lock held by T1
⌧Delete Edge = Unblocking
⌧Cycle = Deadlock
⌧Check periodically for cycles

Example: R1(X) R2(Y) W2(X) W1(Y)

34

The Phantom Problem

T1 locks all pages containing sailor records
with rating = 1, and finds oldest sailor (say,
age = 71).
T2 inserts a new sailor; rating = 1, age = 96.
T2 deletes oldest sailor with rating = 2 (and,
say, age = 80), and commits.
T1 now locks all pages containing sailor
records with rating = 2, and finds oldest (say,
age = 63)

35

Phantom Problem: Analysis

The schedule is not serial but 2PL would allow
such a schedule?
T1 implicitly assumes that it has locked the set
of all sailor records with rating = 1.

Assumption only holds if no sailor records are
added while T1 is executing!
The sailor with rating 1, age 96 is a phantom tuple

Observation
Ensure that the “right” objects are locked
E.g., use predicate locks
No change in 2PL needed

36

Implementing Locking

Needs to execute Lock and Unlock as
atomic operations
Needs to be very fast ~100 instructions
Lock Table

Low-level data structure in memory (not SQL
Table!)
Implemented as a hash table

7

37

Issues in Managing Locks

Multi-granularity locking
Concurrency v.s. locking overhead
Intention locks on higher-level objects
Lock Escalation

Hot spots
Minimize lock duration

38

SQL-92 Syntax for
Transactions

Start Transaction: No explicit statement.
Implicitly started

By a SQL statement
TP monitor (agents other than application
programs)

End Transaction:
By COMMIT or ROLLBACK
By external agents

39

SQL-92: Setting the
Properties of Transactions

SET TRANSACTION
[READ ONLY | READ WRITE]
ISOLATION LEVEL

[READ UNCOMMITTED | SERIALIZABLE |
REPEATABLE READ | READ COMMITTED]
DIAGNOSTICS SIZE

Value_Specification

40

Explanation of Isolation
Levels

Read Uncommitted
Can see uncommitted changes of other transactions
Dirty Read, Unrepeatable Read
Recommended only for statistical functions

Read Committed
Can see committed changes of other transactions
No Dirty read, but unrepeatable read possible
Acceptable for query/decision-support

Repeatable Read
No dirty or unrepeatable read
May exhibit phantom phenomenon

Serializable

41

Implementation of
Isolation Levels

ISOLATION
LEVEL

DIRTY
READ

UNREPEATABLE
READ PHANTOM IMPLEMENTATION

Read
Uncommitted Y Y Y No S locks; writers must run

at higher levels

Read
Committed N Y Y Strict 2PL X locks; S locks

released anytime

Repeatable
Reads N N Y Strict 2PL on data

Serializable N N N Strict 2PL on data and
indices (or predicate locking)

42

Summary of Concurrency
Control

Concurrency control key to a DBMS.
Transactions and the ACID properties:

I handled by concurrency control.
A & D coming soon with logging & recovery.

Conflicts arise when two Xacts access the
same object, and one of the Xacts is
modifying it.
Serial execution is our model of correctness.

8

43

Summary of Concurrency
Control (Contd.)

Serializability allows us to “simulate” serial
execution with better performance.
2PL: A simple mechanism to get serializability.
Lock manager module automates 2PL

Lock table is a big main-mem hash table

Deadlocks are possible, and typically a
deadlock detector is used to solve the
problem.

