Introduction to Database
Systems

CSE 444

Lecture #14
Feb 26 2001

Review: B+ Tree Node
Structure

EAFEENE

Keysk <
aysk<30 Keys30<=k<120 Keys 120<=k<240 Keys 240<=k

B+ Tree and Indexes

#Index on composite (concatenated) key:
(last name, first name)
HWhat's the impact of ordering?

#¥Index AND-ing or OR-ing

[=JAge between [40, 50] and Salary between
[100,200]

[&0btain the pointers (record identifiers) to
data file for each qualifying leaf node

&ISort and intersect (union)

Extensible Hash Table

$E.g. i=1, n=2, k=4

[i=1 \/v 0(010) [1]
0

1 1(011) [1]

\
¥Note: we only look at the first bit (0 or 1)

Insertion in Extensible
Hash Table

#lInsert 1110

[i=1 \/v 0(010) [1]

1 1(011) [1]
T 1(110)

Insertion in Extensible
Hash Table

#ENow insert 1010

[i=1 \/v 0(010) [1]
0

1 1(011) [1]
T 1(110), 1(010)

¥Need to extend table, split blocks
38i becomes 2

Insertion in Extensible
Hash Table

#8Now insert 1110

[i=2 / 0(010) [1]

00

01 10(11) 2]
10 10(10)

11 —

11(10) [2]

Insertion in Extensible
Hash Table

#Now insert 0000, then 0101

[i=2] 0(010) 1]
/ 0(000), 0(101)

Insertion in Extensible
Hash Table

FBAfter splitting the block

00
01 10(11) 2]
10 10(10)
11 —
11(10) 2]
3Need to split block
8
Linear Hash Table
Example
¥¢N=3
(01)00 []
i=2 (11)00
/(01)11 BITFLIP |_|
00
01 (10)10]
10

00(10) 2]
i=2 00(00)
/ 01(01) 2]
00
01 10(11) 2]
10 10(10)
11 —
11(10) 2]
9
Linear Hash Table
Example
#Insert 1000: overflow blocks...
(01)00 [3 [(10)00 []
i=2 (11)00
/ (o111 []
00
01 (10)10 |]
10

Linear Hash Tables

¥Key parameters

| #of discriminating bits, N #of buckets,
R # of records

Capacity Threshold = R/N

FExtension:
Bwhen capacity threshold exceeds (say) 80%
Blindependent on overflow blocks

Linear Hash Table
Extension

#From n=3 to n=4

: (01)00] o100]
- / (11)00 (11)00
o111 |]
00 o . opit ~ |
o1 i=2
10)10 []
10 o (10)10 I
F#0nly needtotouch 00)
one block (which one ?) % o (7 |
11

Linear Hash Table
Extension

¥From n=3 to n=4 finished

(01)00

(11)00

¥ Extension from n=4

to n=5 (new bit) =2

(10)10

00

01 (o111

LT T T

10

11

BitMap Indexes
(Reading: 5.4.1-5.4.3)

38 Bit Vector for every distinct value in the column
3 As many bits as there are records in the data

3R1:25, R2:50 R3:25 R4: 50 R5: 50 R6: 70 R7:70
R8:25

325: 10100001; 50: 01011000 70: 00000110
8 Easy Index OR-ing (score = 25 or score = 50)
3 Easy Index AND-ing (last score = new score)

Compressed BitMaps: Run
Length Encoding

¥Represent sequence of I 0-s followed by 1
as a binary encoding of I

¥ Concatenate codes for each run together
@But, must be able to recover runs

#Scheme
[BIB_I = #of bits in binary encoding of 1

[“IRepresent as B_I — 1 1-s followed by 0 and
then binary encoding of I

Example

313 0-s followed by 1. 4 bits to represent
13. Hence represent as (11101101)

¥Decode: (11101101001011)
#Run-Length: (13,0,3)
$0000000000000110001

38Note: Trailing 0-s not recovered

Index AND-ing and OR-ing

¥Decode and then do Index AND and OR

#Can do stepwise
RDecode one run at a time
[IRead Example 5.26

Query Execution

Required Reading: 2.3.3-2.3.5, 6.1- 6.7
Suggested Reading: 6.8, 6.9

An Algebra for Queries

3 Logical operators
\what they do

¥ Physical operators
B how they do it

Logical Operators in the
Algebra

#8Union, intersection, difference
3Selection o

FProjection M

#¥Join g

#Duplicate elimination &
#¥Grouping y

F¥Sorting 1

Example

Select city, count(*)

From sales M iy c
Group by city ‘
Having sum(price) > 100 O o100
Yy city, sum(price)—p, count(*) — ¢
sales

Physical Operators

SELECT S.buyer T

FROM Purchase P, Person Q buyer

WHERE P.buyer=Q.name AND
Q.CIty=‘seattIe‘ AND Ci‘y:‘seallle'/\ phone>'5430000"
Q.phone > ‘5430000 ‘

Query Plan: -

* logical tree }m\ (Simple Nested Loops)
« implementation burenase oorson

ChOice at eVery (Table scan) (Index scan)

node

° scheduling of Some operators are from relational

. algebra, and others (e.g., scan, grou
operations arge not. (9 ’ 25)

Scanning Tables

#The table is clustered (i.e. blocks consists
only of records from this table):
R Table-scan: if we know where the blocks are

RIndex scan: if we have a sparse index to find
the blocks

38 The table is unclustered (e.g. its records
are placed on blocks with other tables)
IMay need one read for each record

Sorting While Scanning

#¥Sometimes it is useful to have the output

sorted

¥ Three ways to scan it sorted:
HIf there is a primary or secondary index on it,

use it during scan

HIf it fits in memory, sort there
HIf not, use multiway merging

Estimating the Cost of
Operators

FVery important for the optimizer (next
week)
¥ Parameters for a relation R
BIB(R) = number of blocks holding R
XIMeaningful if R is clustered
BIT(R) = number of tuples in R
XIE.g. may need when R is unclustered

®IV(R,a) = number of distinct values of the
attribute a

Sorting

$Blllustrates the difference in algorithm design
when your data is not in main memory:
&Problem: sort 1Gb of data with 1Mb of RAM.
3BArises in many places in database systems:
Data requested in sorted order (ORDER BY)
INeeded for grouping operations
&IFirst step in sort-merge join algorithm

&Duplicate removal

&IBulk loading of B+-tree indexes.

2-Phase Merge-sort:
Requires 3 Buffers

¥Phase 1: Read a page, sort it, write it.
&only one buffer page is used

¥Phase 2: Merge all sorted sublists
three buffer pages used.

S
INPUT 1
OUTPUT
gl INPUT 2
- Main memory :
Disk
Disk buffers

2-Way Merge Sort

§8 Each pass we read + write
each page in file.

[34 [62] [oa] le7 (5.6l [sal 2 [J-inputtite
Mt

PASSO
L] tpageruns

N pages in the file => the
number of passes
=[log, N]+1
So total cost is:

2N([log, N]+1)
$ Improvement: start with
larger runs

3 Sort 1GB with 1MB
memory in 10 passes

PASS1
Zpageruns

PASS2

EANN
N
w [~
o [

4-page runs

PASS3

8-page rung

Can We Do Better ?

* We have more main memory
e Should use it to improve performance

Cost Model for Our
Analysis

3B: Block size

3M: Size of main memory

#N: Number of records in the file
¥R: Size of one record

External Merge-Sort

3Phase one: load M bytes in memory, sort
[Result: runs of length M/R records

I M/R records —

—| [—

— —
Disk M bytes of main memory Disk

Phase Two

¥Merge M/B — 1 runs into a new run
FBResult: runs have now M/R (M/B - 1) records

| [input1
iz M oupa] ||

— 1
]

M bytes of main memory Disk

Phase Three

¥Merge M/B — 1 runs into a new run
#8Result: runs have now M/R (M/B — 1)? records

| input 1
I— —
| Input 2 Output "
| ™| Input M/B
Disk M bytes of main memory Disk

Cost of External Merge
Sort

¥ Number of passes:

#Think differently

HGiven B = 4KB, M = 64MB, R = 0.1KB

HPass 1: runs of length M/R = 640000
[XIHave now sorted runs of 640000 records

[AIPass 2: runs increase by a factor of M/B — 1 = 16000
XIHave now sorted runs of 10,240,000,000 = 10 records

[&IPass 3: runs increase by a factor of M/B — 1 = 16000
[XIHave now sorted runs of 10'* records
XINobody has so much data !

& Can sort everything in 2 or 3 passes !

1+log,, o[NRTM]

Cost of the Scan Operator

#8Clustered relation:
[RTable scan: B(R); to sort: 3B(R)
[Index scan: B(R); to sort: B(R) or 3B(R)
#¥Unclustered relation
EIT(R); to sort: T(R) + 2B(R)

One-Pass Algorithms

Selection o(R), projection M(R)

3Both are tuple-at-a-Time algorithms
3Cost: B(R)

Input buffer —{ Unary Output buffer

operator

One-pass Algorithms

Duplicate elimination d(R)
3Need to keep tuples in memory

F¥When new tuple arrives, need to compare
it with previously seen tuples

#Balanced search tree, or hash table
#¥Cost: B(R)
F¥Assumption: B(3(R)) <=M

One-pass Algorithms

Grouping: ycity, sum(price) (R)

¥Need to store all cities in memory
FAlso store the sum(price) for each city
3 Balanced search tree or hash table
38Cost: B(R)

F¥Assumption: number of cities fits in
memory

One-pass Algorithms

Binary operations: RN'S,RUS, R-S

#¥Assumption: min(B(R), B(S)) <=M

#8Scan one table first, then the next,
eliminate duplicates

#8Cost: B(R)+B(S)

40

Nested Loop Joins
#¥Tuple-based nested loop R ><i S
For each tuple r in R do

For each tuple s in S do

if r and s join then output (r,s)

#8Cost: T(R) T(S), sometimes T(R) B(S)

41

Nested Loop Joins
#Block-based Nested Loop Join

For each (M-1) blocks bs of S do
for each block br of R do
for each tuple s in bs
for each tuple r in br do
if r and s join then output(r,s)

42

Nested Loop Joins

Join Result
R&S Hash table for block of S [—

Input buffer for R~ Output buffer

43

Nested Loop Joins

38 Block-based Nested Loop Join
¥ Cost:
[AIRead S once: cost B(S)

[&=Outer loop runs B(S)/(M-1) times, and each time
need to read R: costs B(S)B(R)/(M-1)

[Total cost: B(S) + B(S)B(R)/(M-1)

3 Notice: it is better to iterate over the smaller
relation first

¥R >« S: R=outer relation, S=inner relation

44

Two-Pass Algorithms
Based on Sorting

F¥Recall: multi-way merge sort needs only
two passes !

$¥Assumption: B(R) <= M?
¥ Cost for sorting: 3B(R)

45

Two-Pass Algorithms
Based on Sorting

Duplicate elimination &(R)
¥ Trivial idea: sort first, then eliminate duplicates

3 Step 1: sort chunks of size M, write
Hcost 2B(R)

3 Step 2: merge M-1 runs, but include each tuple
only once

Hcost B(R)
3 Total cost: 3B(R), Assumption: B(R) <= M2

46

Two-Pass Algorithms
Based on Sorting

Grouping: ycity, sum(price) (R)
#¥Same as before: sort, then compute the
sum(price) for each group

38As before: compute sum(price) during the
merge phase.

3 Total cost: 3B(R)
#$Assumption: B(R) <= M?

47

Two-Pass Algorithms
Based on Sorting

Binary operations: RN'S,RUS,R-S
3 Idea: sort R, sort S, then do the right thing
A closer look:

[IStep 1: split R into runs of size M, then split S into
runs of size M. Cost: 2B(R) + 2B(S)

RIStep 2: merge M/2 runs from R; merge M/2 runs
from S; ouput a tuple on a case by cases basis

3 Total cost: 3B(R)+3B(S)
38 Assumption: B(R)+B(S)<= M2

48

Two-Pass Join Algorithms
Based on Sorting

3 Start by sorting both R and S on the join
attribute:
HCost: 4B(R)+4B(S) (because need to write to disk)
#Read both relations in sorted order, match
tuples
A Cost: B(R)+B(S)
#8 Difficulty: many tuples in R may match many in
S
HIIf at least one set of tuples fits in M, we are OK
Otherwise need nested loop
A Total cost: 5B(R)+5B(S)
EAssumption: B(R) <= M2, B(S) <= M? 2

Two-Pass Algorithms
Based on Sorting

JoinR>< S

3If the number of tuples in R matching
those in S is small (or vice versa) we can
compute the join during the merge phase
¥ Total cost: 3B(R)+3B(S)

$Assumption: B(R) + B(S) <= M?

Two Pass Algorithms
Based on Hashing

¥ Idea: partition a relation R into buckets, on
disk
3 Each bucket has size approx. B(R)/M

Relation

OuTPUT Partitions
—— 1
! =m0 s
INPUT
2 N 2
L i & O
h M-1
B(R)] M-1
Disk M main memory buffers Disk

¥ Does each bucket fit in main memory ?
RYes if BR)/M <= M, i.e. B(R) <= M2 51

Hash Based Algorithms for
0

3BRecall: d(R) = duplicate elimination
¥Step 1. Partition R into buckets

38Step 2. Apply & to each bucket (may read
in main memory)

¥ Cost: 3B(R)
¥Assumption:B(R) <= M?

Hash Based Algorithms for
Y

#Recall: y(R) =grouping and aggregation
38Step 1. Partition R into buckets

38Step 2. Apply y to each bucket (may read
in main memory)

#8Cost: 3B(R)
$8Assumption:B(R) <= M2

Hash-based Join

#R pgS

3Recall the main memory hash-based join:
RScan S, build buckets in main memory
EThen scan R and join

Partitioned Hash Join

R >SS
36 Step 1:
RHash S into M buckets
Hsend all buckets to disk
38 Step 2
Hash R into M buckets
&Send all buckets to disk
§8Step 3
RJoin every pair of buckets

partition i. oo
Partitions
ofR& S

. . ash tablef
+ Read in a partition e |G o

of R, hash it using | fr?z E]

h2 (<> h!). Scan 00

matching partition cee éhz

of S, search for 00 Input uffer Outpun

matches. Disk B main memory buffers Disk

Original

Hash-Join Relation OUTPUT Partitions
S —

¥ Partition both
relations using hash
fn h: R tuples in
partition i will only
match S tuples in

INPUT
h:
= funeiion
h

Partitioned Hash Join

#8Cost: 3B(R) + 3B(S)
$$Assumption: min(B(R), B(S)) <= M?

Hybrid Hash Join
Algorithm

¥ Partition S into k buckets

#But keep first bucket S, in memory, k-1
buckets to disk

FPartition R into k buckets
[IFirst bucket R, is joined immediately with S;
[&0ther k-1 buckets go to disk

3Finally, join k-1 pairs of buckets:
BI(Ry,S,), (R3,S3),s - (RS

Hybrid Join Algorithm

#How big should we choose k ?
3Average bucket size for S is B(S)/k
3Need to fit B(S)/k + (k-1) blocks in

memory

BEB(S)/k + (k-1) <=M

&k slightly smaller than B(S)/M

Hybrid Join Algorithm

#How many I/Os ?
FRecall: cost of partitioned hash join:
B3B(R) + 3B(S)

¥ Now we save 2 disk operations for one bucket

3 Recall there are k buckets

¥ Hence we save 2/k(B(R) + B(S))

#Cost: (3-2/k)(B(R) + B(S)) =
(3-2M/B(S))(B(R) + B(S))

10

