
1

Introduction to Database
Systems

CSE 444

Lecture #14
Feb 26 2001

2

Review: B+ Tree Node
Structure

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

3

B+ Tree and Indexes

aIndex on composite (concatenated) key:
(last name, first name)
`What’s the impact of ordering?

aIndex AND-ing or OR-ing
`Age between [40, 50] and Salary between

[100,200]
`Obtain the pointers (record identifiers) to

data file for each qualifying leaf node
`Sort and intersect (union)

4

Extensible Hash Table

aE.g. i=1, n=2, k=4

aNote: we only look at the first bit (0 or 1)

0(010)

1(011)

i=1 1

1

0
1

5

Insertion in Extensible
Hash Table

aInsert 1110
0(010)

1(110)

1(011)

i=1 1

1

0
1

6

Insertion in Extensible
Hash Table

aNow insert 1010

aNeed to extend table, split blocks
ai becomes 2

0(010)

1(110), 1(010)

1(011)

i=1 1

1

0
1

2

7

Insertion in Extensible
Hash Table

aNow insert 1110
0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

8

Insertion in Extensible
Hash Table

aNow insert 0000, then 0101

aNeed to split block

0(000), 0(101)

0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

9

Insertion in Extensible
Hash Table

aAfter splitting the block

00(00)

00(10)

10(10)

10(11)

i=2

2

2

00
01
10
11

11(10) 2

01(01) 2

10

Linear Hash Table
Example

aN=3

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

11

Linear Hash Table
Example

aInsert 1000: overflow blocks…

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11

(10)00

12

Linear Hash Tables

aKey parameters
`I #of discriminating bits, N #of buckets,

R # of records
`Capacity Threshold = R/N

aExtension:
`when capacity threshold exceeds (say) 80%
`independent on overflow blocks

3

13

Linear Hash Table
Extension

aFrom n=3 to n=4

aOnly need to touch
one block (which one ?)

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11
14

Linear Hash Table
Extension

aFrom n=3 to n=4 finished

aExtension from n=4
to n=5 (new bit)

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11

15

BitMap Indexes
(Reading: 5.4.1-5.4.3)

aBit Vector for every distinct value in the column
aAs many bits as there are records in the data
aR1:25, R2:50 R3:25 R4: 50 R5: 50 R6: 70 R7:70

R8:25
a25: 10100001; 50: 01011000 70: 00000110
aEasy Index OR-ing (score = 25 or score = 50)
aEasy Index AND-ing (last score = new score)

16

Compressed BitMaps: Run
Length Encoding

aRepresent sequence of I 0-s followed by 1
as a binary encoding of I
aConcatenate codes for each run together
`But, must be able to recover runs

aScheme
`B_I = #of bits in binary encoding of I
`Represent as B_I – 1 1-s followed by 0 and

then binary encoding of I

17

Example

a13 0-s followed by 1. 4 bits to represent
13. Hence represent as (11101101)
aDecode: (11101101001011)
aRun-Length: (13,0,3)
a0000000000000110001
aNote: Trailing 0-s not recovered

18

Index AND-ing and OR-ing

aDecode and then do Index AND and OR
aCan do stepwise
`Decode one run at a time
`Read Example 5.26

4

Query Execution

Required Reading: 2.3.3-2.3.5, 6.1- 6.7
Suggested Reading: 6.8, 6.9

20

An Algebra for Queries

aLogical operators
`what they do

aPhysical operators
`how they do it

21

Logical Operators in the
Algebra

aUnion, intersection, difference
aSelection σ
aProjection Π
aJoin
aDuplicate elimination δ
aGrouping γ
aSorting τ

><

22

Example

Select city, count(*)
From sales
Group by city
Having sum(price) > 100

sales

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

23

Physical Operators
SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

Query Plan:
• logical tree
• implementation
choice at every
node
• scheduling of
operations

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan, group)
are not. 24

Scanning Tables

aThe table is clustered (i.e. blocks consists
only of records from this table):
`Table-scan: if we know where the blocks are
`Index scan: if we have a sparse index to find

the blocks

aThe table is unclustered (e.g. its records
are placed on blocks with other tables)
`May need one read for each record

5

25

Sorting While Scanning

aSometimes it is useful to have the output
sorted
aThree ways to scan it sorted:
`If there is a primary or secondary index on it,

use it during scan
`If it fits in memory, sort there
`If not, use multiway merging

26

Estimating the Cost of
Operators

aVery important for the optimizer (next
week)
aParameters for a relation R
`B(R) = number of blocks holding R
⌧Meaningful if R is clustered

`T(R) = number of tuples in R
⌧E.g. may need when R is unclustered

`V(R,a) = number of distinct values of the
attribute a

Sorting

aIllustrates the difference in algorithm design
when your data is not in main memory:
`Problem: sort 1Gb of data with 1Mb of RAM.

aArises in many places in database systems:
`Data requested in sorted order (ORDER BY)
`Needed for grouping operations
`First step in sort-merge join algorithm
`Duplicate removal
`Bulk loading of B+-tree indexes.

2-Phase Merge-sort:
Requires 3 Buffers

aPhase 1: Read a page, sort it, write it.
`only one buffer page is used

aPhase 2: Merge all sorted sublists
` three buffer pages used.

Main memory
buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

2-Way Merge Sort
a Each pass we read + write

each page in file.
a N pages in the file => the

number of passes

a So total cost is:

a Improvement: start with
larger runs

a Sort 1GB with 1MB
memory in 10 passes

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

30

Can We Do Better ?

• We have more main memory
• Should use it to improve performance

6

Cost Model for Our
Analysis
aB: Block size
aM: Size of main memory
aN: Number of records in the file
aR: Size of one record

32

External Merge-Sort

aPhase one: load M bytes in memory, sort
`Result: runs of length M/R records

M bytes of main memory
DiskDisk

.
M/R records

Phase Two

aMerge M/B – 1 runs into a new run
aResult: runs have now M/R (M/B – 1) records

M bytes of main memory
DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Phase Three

aMerge M/B – 1 runs into a new run
aResult: runs have now M/R (M/B – 1)2 records

M bytes of main memory
DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Cost of External Merge
Sort
aNumber of passes:
aThink differently
`Given B = 4KB, M = 64MB, R = 0.1KB
`Pass 1: runs of length M/R = 640000
⌧Have now sorted runs of 640000 records

`Pass 2: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 10,240,000,000 = 1010 records

`Pass 3: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 1014 records
⌧Nobody has so much data !

aCan sort everything in 2 or 3 passes !

  MNRBM /log1 1/ −+

36

Cost of the Scan Operator

aClustered relation:
`Table scan: B(R); to sort: 3B(R)
`Index scan: B(R); to sort: B(R) or 3B(R)

aUnclustered relation
`T(R); to sort: T(R) + 2B(R)

7

37

One-Pass Algorithms

Selection σ(R), projection Π(R)
aBoth are tuple-at-a-Time algorithms
aCost: B(R)

Input buffer Output bufferUnary
operator

38

One-pass Algorithms

Duplicate elimination δ(R)
aNeed to keep tuples in memory
aWhen new tuple arrives, need to compare

it with previously seen tuples
aBalanced search tree, or hash table
aCost: B(R)
aAssumption: B(δ(R)) <= M

39

One-pass Algorithms

Grouping: γcity, sum(price) (R)
aNeed to store all cities in memory
aAlso store the sum(price) for each city
aBalanced search tree or hash table
aCost: B(R)
aAssumption: number of cities fits in

memory

40

One-pass Algorithms

Binary operations: R ∩ S, R U S, R – S
aAssumption: min(B(R), B(S)) <= M
aScan one table first, then the next,

eliminate duplicates
aCost: B(R)+B(S)

41

Nested Loop Joins

aTuple-based nested loop R S

For each tuple r in R do
For each tuple s in S do

if r and s join then output (r,s)

aCost: T(R) T(S), sometimes T(R) B(S)

><

42

Nested Loop Joins

aBlock-based Nested Loop Join

For each (M-1) blocks bs of S do
for each block br of R do

for each tuple s in bs
for each tuple r in br do

if r and s join then output(r,s)

8

43

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(k < B-1 pages)

Input buffer for R Output buffer

. . .

Join Result

44

Nested Loop Joins

aBlock-based Nested Loop Join
aCost:
`Read S once: cost B(S)
`Outer loop runs B(S)/(M-1) times, and each time

need to read R: costs B(S)B(R)/(M-1)
`Total cost: B(S) + B(S)B(R)/(M-1)

aNotice: it is better to iterate over the smaller
relation first

aR S: R=outer relation, S=inner relation><

45

Two-Pass Algorithms
Based on Sorting

aRecall: multi-way merge sort needs only
two passes !
aAssumption: B(R) <= M2

aCost for sorting: 3B(R)

46

Two-Pass Algorithms
Based on Sorting

Duplicate elimination δ(R)
aTrivial idea: sort first, then eliminate duplicates
aStep 1: sort chunks of size M, write
`cost 2B(R)

aStep 2: merge M-1 runs, but include each tuple
only once
`cost B(R)

aTotal cost: 3B(R), Assumption: B(R) <= M2

47

Two-Pass Algorithms
Based on Sorting

Grouping: γcity, sum(price) (R)
aSame as before: sort, then compute the

sum(price) for each group
aAs before: compute sum(price) during the

merge phase.
aTotal cost: 3B(R)
aAssumption: B(R) <= M2

48

Two-Pass Algorithms
Based on Sorting

Binary operations: R ∩ S, R U S, R – S
aIdea: sort R, sort S, then do the right thing
aA closer look:
`Step 1: split R into runs of size M, then split S into

runs of size M. Cost: 2B(R) + 2B(S)
`Step 2: merge M/2 runs from R; merge M/2 runs

from S; ouput a tuple on a case by cases basis
aTotal cost: 3B(R)+3B(S)
aAssumption: B(R)+B(S)<= M2

9

49

Two-Pass Join Algorithms
Based on Sorting
aStart by sorting both R and S on the join

attribute:
`Cost: 4B(R)+4B(S) (because need to write to disk)

aRead both relations in sorted order, match
tuples
`Cost: B(R)+B(S)

aDifficulty: many tuples in R may match many in
S
`If at least one set of tuples fits in M, we are OK
`Otherwise need nested loop
`Total cost: 5B(R)+5B(S)
`Assumption: B(R) <= M2, B(S) <= M2

50

Two-Pass Algorithms
Based on Sorting

Join R S
aIf the number of tuples in R matching

those in S is small (or vice versa) we can
compute the join during the merge phase
aTotal cost: 3B(R)+3B(S)
aAssumption: B(R) + B(S) <= M2

><

51

Two Pass Algorithms
Based on Hashing
aIdea: partition a relation R into buckets, on

disk
aEach bucket has size approx. B(R)/M

aDoes each bucket fit in main memory ?
`Yes if B(R)/M <= M, i.e. B(R) <= M2

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

52

Hash Based Algorithms for
δ

aRecall: δ(R) = duplicate elimination
aStep 1. Partition R into buckets
aStep 2. Apply δ to each bucket (may read

in main memory)
aCost: 3B(R)
aAssumption:B(R) <= M2

53

Hash Based Algorithms for
γ

aRecall: γ(R) = grouping and aggregation
aStep 1. Partition R into buckets
aStep 2. Apply γ to each bucket (may read

in main memory)

aCost: 3B(R)
aAssumption:B(R) <= M2

54

Hash-based Join

aR S
aRecall the main memory hash-based join:
`Scan S, build buckets in main memory
`Then scan R and join

><

10

55

Partitioned Hash Join

R S
aStep 1:
`Hash S into M buckets
`send all buckets to disk

aStep 2
`Hash R into M buckets
`Send all buckets to disk

aStep 3
`Join every pair of buckets

><

Hash-Join
a Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

� Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

57

Partitioned Hash Join

aCost: 3B(R) + 3B(S)
aAssumption: min(B(R), B(S)) <= M2

58

Hybrid Hash Join
Algorithm

aPartition S into k buckets
aBut keep first bucket S1 in memory, k-1

buckets to disk
aPartition R into k buckets
`First bucket R1 is joined immediately with S1

`Other k-1 buckets go to disk
aFinally, join k-1 pairs of buckets:
`(R2,S2), (R3,S3), …, (Rk,Sk)

59

Hybrid Join Algorithm

aHow big should we choose k ?
aAverage bucket size for S is B(S)/k
aNeed to fit B(S)/k + (k-1) blocks in

memory
`B(S)/k + (k-1) <= M
`k slightly smaller than B(S)/M

60

Hybrid Join Algorithm

aHow many I/Os ?
aRecall: cost of partitioned hash join:
`3B(R) + 3B(S)

aNow we save 2 disk operations for one bucket
aRecall there are k buckets
aHence we save 2/k(B(R) + B(S))
aCost: (3-2/k)(B(R) + B(S)) =

(3-2M/B(S))(B(R) + B(S))

