
1

Introduction to Database
Systems

CSE 444

Lecture #14
Feb 26 2001

2

Review: B+ Tree Node
Structure

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

3

B+ Tree and Indexes

Index on composite (concatenated) key:
(last name, first name)

What’s the impact of ordering?
Index AND-ing or OR-ing

Age between [40, 50] and Salary between
[100,200]
Obtain the pointers (record identifiers) to
data file for each qualifying leaf node
Sort and intersect (union)

4

Extensible Hash Table

E.g. i=1, n=2, k=4

Note: we only look at the first bit (0 or 1)

0(010)

1(011)

i=1 1

1

0
1

5

Insertion in Extensible
Hash Table

Insert 1110
0(010)

1(110)

1(011)

i=1 1

1

0
1

6

Insertion in Extensible
Hash Table

Now insert 1010

Need to extend table, split blocks
i becomes 2

0(010)

1(110), 1(010)

1(011)

i=1 1

1

0
1

2

7

Insertion in Extensible
Hash Table

Now insert 1110
0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

8

Insertion in Extensible
Hash Table

Now insert 0000, then 0101

Need to split block

0(000), 0(101)

0(010)

10(10)

10(11)

i=2 1

2

00
01
10
11

11(10) 2

9

Insertion in Extensible
Hash Table

After splitting the block

00(00)

00(10)

10(10)

10(11)

i=2

2

2

00
01
10
11

11(10) 2

01(01) 2

10

Linear Hash Table
Example

N=3

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11 BIT FLIP

11

Linear Hash Table
Example

Insert 1000: overflow blocks…

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11

(10)00

12

Linear Hash Tables

Key parameters
I #of discriminating bits, N #of buckets,
R # of records
Capacity Threshold = R/N

Extension:
when capacity threshold exceeds (say) 80%
independent on overflow blocks

3

13

Linear Hash Table
Extension

From n=3 to n=4

Only need to touch
one block (which one ?)

(11)00

(01)00

(10)10

i=2

00
01
10

(01)11
(01)11

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11
14

Linear Hash Table
Extension

From n=3 to n=4 finished

Extension from n=4
to n=5 (new bit)

(01)11

i=2

00
01
10

(10)10

(11)00

(01)00

11

15

BitMap Indexes
(Reading: 5.4.1-5.4.3)

Bit Vector for every distinct value in the column
As many bits as there are records in the data
R1:25, R2:50 R3:25 R4: 50 R5: 50 R6: 70 R7:70
R8:25
25: 10100001; 50: 01011000 70: 00000110
Easy Index OR-ing (score = 25 or score = 50)
Easy Index AND-ing (last score = new score)

16

Compressed BitMaps: Run
Length Encoding

Represent sequence of I 0-s followed by 1
as a binary encoding of I
Concatenate codes for each run together

But, must be able to recover runs
Scheme

B_I = #of bits in binary encoding of I
Represent as B_I – 1 1-s followed by 0 and
then binary encoding of I

17

Example

13 0-s followed by 1. 4 bits to represent
13. Hence represent as (11101101)
Decode: (11101101001011)
Run-Length: (13,0,3)
0000000000000110001
Note: Trailing 0-s not recovered

18

Index AND-ing and OR-ing

Decode and then do Index AND and OR
Can do stepwise

Decode one run at a time
Read Example 5.26

4

Query Execution

Required Reading: 2.3.3-2.3.5, 6.1- 6.7
Suggested Reading: 6.8, 6.9

20

An Algebra for Queries

Logical operators
what they do

Physical operators
how they do it

21

Logical Operators in the
Algebra

Union, intersection, difference
Selection σ
Projection Π
Join
Duplicate elimination δ
Grouping γ
Sorting τ

><

22

Example

Select city, count(*)
From sales
Group by city
Having sum(price) > 100

sales

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

23

Physical Operators
SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND
Q.phone > ‘5430000’

Query Plan:
• logical tree
• implementation
choice at every
node
• scheduling of
operations

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan, group)
are not. 24

Scanning Tables

The table is clustered (i.e. blocks consists
only of records from this table):

Table-scan: if we know where the blocks are
Index scan: if we have a sparse index to find
the blocks

The table is unclustered (e.g. its records
are placed on blocks with other tables)

May need one read for each record

5

25

Sorting While Scanning

Sometimes it is useful to have the output
sorted
Three ways to scan it sorted:

If there is a primary or secondary index on it,
use it during scan
If it fits in memory, sort there
If not, use multiway merging

26

Estimating the Cost of
Operators

Very important for the optimizer (next
week)
Parameters for a relation R

B(R) = number of blocks holding R
⌧Meaningful if R is clustered
T(R) = number of tuples in R
⌧E.g. may need when R is unclustered
V(R,a) = number of distinct values of the
attribute a

Sorting

Illustrates the difference in algorithm design
when your data is not in main memory:

Problem: sort 1Gb of data with 1Mb of RAM.
Arises in many places in database systems:

Data requested in sorted order (ORDER BY)
Needed for grouping operations
First step in sort-merge join algorithm
Duplicate removal
Bulk loading of B+-tree indexes.

2-Phase Merge-sort:
Requires 3 Buffers

Phase 1: Read a page, sort it, write it.
only one buffer page is used

Phase 2: Merge all sorted sublists
three buffer pages used.

Main memory
buffers

INPUT 1

INPUT 2

OUTPUT

DiskDisk

2-Way Merge Sort
Each pass we read + write
each page in file.
N pages in the file => the
number of passes

So total cost is:

Improvement: start with
larger runs
Sort 1GB with 1MB
memory in 10 passes

 = +log2 1N

 ()2 12N Nlog +

Input file

1-page runs

2-page runs

4-page runs

8-page runs

PASS 0

PASS 1

PASS 2

PASS 3

9

3,4 6,2 9,4 8,7 5,6 3,1 2

3,4 5,62,6 4,9 7,8 1,3 2

2,3
4,6

4,7
8,9

1,3
5,6 2

2,3
4,4
6,7
8,9

1,2
3,5
6

1,2
2,3
3,4
4,5
6,6
7,8

30

Can We Do Better ?

• We have more main memory
• Should use it to improve performance

6

Cost Model for Our
Analysis
B: Block size
M: Size of main memory
N: Number of records in the file
R: Size of one record

32

External Merge-Sort

Phase one: load M bytes in memory, sort
Result: runs of length M/R records

M bytes of main memory
DiskDisk

.
M/R records

Phase Two

Merge M/B – 1 runs into a new run
Result: runs have now M/R (M/B – 1) records

M bytes of main memory
DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Phase Three

Merge M/B – 1 runs into a new run
Result: runs have now M/R (M/B – 1)2 records

M bytes of main memory
DiskDisk

.
Input M/B

Input 1

Input 2
. . . .

Output

Cost of External Merge
Sort
Number of passes:
Think differently

Given B = 4KB, M = 64MB, R = 0.1KB
Pass 1: runs of length M/R = 640000
⌧Have now sorted runs of 640000 records

Pass 2: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 10,240,000,000 = 1010 records

Pass 3: runs increase by a factor of M/B – 1 = 16000
⌧Have now sorted runs of 1014 records
⌧Nobody has so much data !

Can sort everything in 2 or 3 passes !

 MNRBM /log1 1/ −+

36

Cost of the Scan Operator

Clustered relation:
Table scan: B(R); to sort: 3B(R)
Index scan: B(R); to sort: B(R) or 3B(R)

Unclustered relation
T(R); to sort: T(R) + 2B(R)

7

37

One-Pass Algorithms

Selection σ(R), projection Π(R)
Both are tuple-at-a-Time algorithms
Cost: B(R)

Input buffer Output bufferUnary
operator

38

One-pass Algorithms

Duplicate elimination δ(R)
Need to keep tuples in memory
When new tuple arrives, need to compare
it with previously seen tuples
Balanced search tree, or hash table
Cost: B(R)
Assumption: B(δ(R)) <= M

39

One-pass Algorithms

Grouping: γcity, sum(price) (R)
Need to store all cities in memory
Also store the sum(price) for each city
Balanced search tree or hash table
Cost: B(R)
Assumption: number of cities fits in
memory

40

One-pass Algorithms

Binary operations: R ∩ S, R U S, R – S
Assumption: min(B(R), B(S)) <= M
Scan one table first, then the next,
eliminate duplicates
Cost: B(R)+B(S)

41

Nested Loop Joins

Tuple-based nested loop R S

For each tuple r in R do
For each tuple s in S do

if r and s join then output (r,s)

Cost: T(R) T(S), sometimes T(R) B(S)

><

42

Nested Loop Joins

Block-based Nested Loop Join

For each (M-1) blocks bs of S do
for each block br of R do

for each tuple s in bs
for each tuple r in br do

if r and s join then output(r,s)

8

43

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(k < B-1 pages)

Input buffer for R Output buffer

. . .

Join Result

44

Nested Loop Joins

Block-based Nested Loop Join
Cost:

Read S once: cost B(S)
Outer loop runs B(S)/(M-1) times, and each time
need to read R: costs B(S)B(R)/(M-1)
Total cost: B(S) + B(S)B(R)/(M-1)

Notice: it is better to iterate over the smaller
relation first
R S: R=outer relation, S=inner relation><

45

Two-Pass Algorithms
Based on Sorting

Recall: multi-way merge sort needs only
two passes !
Assumption: B(R) <= M2

Cost for sorting: 3B(R)

46

Two-Pass Algorithms
Based on Sorting

Duplicate elimination δ(R)
Trivial idea: sort first, then eliminate duplicates
Step 1: sort chunks of size M, write

cost 2B(R)

Step 2: merge M-1 runs, but include each tuple
only once

cost B(R)

Total cost: 3B(R), Assumption: B(R) <= M2

47

Two-Pass Algorithms
Based on Sorting

Grouping: γcity, sum(price) (R)
Same as before: sort, then compute the
sum(price) for each group
As before: compute sum(price) during the
merge phase.
Total cost: 3B(R)
Assumption: B(R) <= M2

48

Two-Pass Algorithms
Based on Sorting

Binary operations: R ∩ S, R U S, R – S
Idea: sort R, sort S, then do the right thing
A closer look:

Step 1: split R into runs of size M, then split S into
runs of size M. Cost: 2B(R) + 2B(S)
Step 2: merge M/2 runs from R; merge M/2 runs
from S; ouput a tuple on a case by cases basis

Total cost: 3B(R)+3B(S)
Assumption: B(R)+B(S)<= M2

9

49

Two-Pass Join Algorithms
Based on Sorting

Start by sorting both R and S on the join
attribute:

Cost: 4B(R)+4B(S) (because need to write to disk)
Read both relations in sorted order, match
tuples

Cost: B(R)+B(S)
Difficulty: many tuples in R may match many in
S

If at least one set of tuples fits in M, we are OK
Otherwise need nested loop
Total cost: 5B(R)+5B(S)
Assumption: B(R) <= M2, B(S) <= M2

50

Two-Pass Algorithms
Based on Sorting

Join R S
If the number of tuples in R matching
those in S is small (or vice versa) we can
compute the join during the merge phase
Total cost: 3B(R)+3B(S)
Assumption: B(R) + B(S) <= M2

><

51

Two Pass Algorithms
Based on Hashing

Idea: partition a relation R into buckets, on
disk
Each bucket has size approx. B(R)/M

Does each bucket fit in main memory ?
Yes if B(R)/M <= M, i.e. B(R) <= M2

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

52

Hash Based Algorithms for
δ

Recall: δ(R) = duplicate elimination
Step 1. Partition R into buckets
Step 2. Apply δ to each bucket (may read
in main memory)
Cost: 3B(R)
Assumption:B(R) <= M2

53

Hash Based Algorithms for
γ

Recall: γ(R) = grouping and aggregation
Step 1. Partition R into buckets
Step 2. Apply γ to each bucket (may read
in main memory)

Cost: 3B(R)
Assumption:B(R) <= M2

54

Hash-based Join

R S
Recall the main memory hash-based join:

Scan S, build buckets in main memory
Then scan R and join

><

10

55

Partitioned Hash Join

R S
Step 1:

Hash S into M buckets
send all buckets to disk

Step 2
Hash R into M buckets
Send all buckets to disk

Step 3
Join every pair of buckets

><

Hash-Join
Partition both
relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Ri

Hash table for partition
Si (< M-1 pages)

B main memory buffersDisk

Output
buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

57

Partitioned Hash Join

Cost: 3B(R) + 3B(S)
Assumption: min(B(R), B(S)) <= M2

58

Hybrid Hash Join
Algorithm

Partition S into k buckets
But keep first bucket S1 in memory, k-1
buckets to disk
Partition R into k buckets

First bucket R1 is joined immediately with S1

Other k-1 buckets go to disk
Finally, join k-1 pairs of buckets:

(R2,S2), (R3,S3), …, (Rk,Sk)

59

Hybrid Join Algorithm

How big should we choose k ?
Average bucket size for S is B(S)/k
Need to fit B(S)/k + (k-1) blocks in
memory

B(S)/k + (k-1) <= M
k slightly smaller than B(S)/M

60

Hybrid Join Algorithm

How many I/Os ?
Recall: cost of partitioned hash join:

3B(R) + 3B(S)

Now we save 2 disk operations for one bucket
Recall there are k buckets
Hence we save 2/k(B(R) + B(S))
Cost: (3-2/k)(B(R) + B(S)) =

(3-2M/B(S))(B(R) + B(S))

