Introduction to Database Systems

CSE 444

Lecture \＃14
Feb 262001

B＋Tree and Indexes

HIndex on composite（concatenated）key： （last name，first name）囚What＇s the impact of ordering？
HIndex AND－ing or OR－ing
囚Age between［40，50］and Salary between ［100，200］
囚Obtain the pointers（record identifiers）to data file for each qualifying leaf node
囚Sort and intersect（union）

Review：B＋Tree Node Structure

Keys k <30 Keys $30<=k<120 \quad$ Keys $120<=k<240 \quad$ Keys $240<=k$

Extensible Hash Table

ЖE．g．$i=1, n=2, k=4$

HNote：we only look at the first bit（0 or 1）

Insertion in Extensible Hash Table

HInsert 1110

Insertion in Extensible Hash Table

HNow insert 1010

HNeed to extend table，split blocks भi becomes 2

Insertion in Extensible Hash Table

HNow insert 1110

Insertion in Extensible Hash Table

HAfter splitting the block

Linear Hash Table Example

HInsert 1000：overflow blocks．．．

Insertion in Extensible Hash Table

HNow insert 0000，then 0101

Linear Hash Table Example

\＆N＝3

Linear Hash Tables

HKey parameters
囚I \＃of discriminating bits，N \＃of buckets， R \＃of records
©Capacity Threshold $=\mathrm{R} / \mathrm{N}$
みExtension：
囚when capacity threshold exceeds（say）80\％囚independent on overflow blocks

BitMap Indexes

（Reading：5．4．1－5．4．3）

\mathscr{H} Bit Vector for every distinct value in the column \mathscr{H} As many bits as there are records in the data HR1：25，R2：50 R3：25 R4： 50 R5： 50 R6： 70 R7：70 R8：25
H25：10100001；50： 01011000 70： 00000110
\＆Easy Index OR－ing（score $=25$ or score $=50$ ）
\mathscr{H} Easy Index AND－ing（last score＝new score）

Linear Hash Table Extension

HFrom $n=3$ to $n=4$ finished

HExtension from $n=4$ to $\mathrm{n}=5$（new bit）

Compressed BitMaps：Run Length Encoding

HRepresent sequence of I 0－s followed by 1 as a binary encoding of I
HConcatenate codes for each run together囚But，must be able to recover runs
HScheme
囚B＿I＝\＃of bits in binary encoding of I囚Represent as B＿I－ 1 1－s followed by 0 and then binary encoding of I

Example

$\mathscr{H} 130$－s followed by 1.4 bits to represent
13．Hence represent as（11101101）
HDecode：（11101101001011）
\＆Run－Length：$(13,0,3)$
\＆0000000000000110001
HNote：Trailing 0－s not recovered

Index AND－ing and OR－ing

HDecode and then do Index AND and OR
HCan do stepwise
©Decode one run at a time
囚Read Example 5.26

Query Execution

Required Reading：2．3．3－2．3．5，6．1－6．7
Suggested Reading：6．8， 6.9

Logical Operators in the Algebra

HUnion，intersection，difference
\＆Selection σ
\＆Projection П
\＆Join \bowtie
HDuplicate elimination δ
\＆Grouping γ
\＆Sorting τ

Example

Select city，count（＊）
From sales
Group by city
Having sum（price）＞ 100

Physical Operators

SELECT S．buyer FROM Purchase P，Person Q WHERE P．buyer＝Q．name AND Q．city＝＇seattle＇AND Q．phone＞＇5430000＇	
Query Plan：	∞
－logical tree	Buyer＝name（Simple Nested Loops）
－implementation	Purchase Person
choice at every	（Table scan）（Index scan）
node	
－scheduling of Som	e operators are from relational ra，and others（e．g．，scan，group）
operations are	not． 23

Scanning Tables

$\mathscr{H T}$ The table is clustered（i．e．blocks consists only of records from this table）：
囚Table－scan：if we know where the blocks are囚Index scan：if we have a sparse index to find the blocks
HThe table is unclustered（e．g．its records are placed on blocks with other tables）
囚May need one read for each record

Sorting While Scanning

\mathscr{H} Sometimes it is useful to have the output sorted
\mathscr{H} Three ways to scan it sorted：
©If there is a primary or secondary index on it， use it during scan
囚If it fits in memory，sort there
©If not，use multiway merging

Estimating the Cost of Operators

\mathscr{H} Very important for the optimizer（next week）
HParameters for a relation R
$\triangle B(R)=$ number of blocks holding R
区Meaningful if R is clustered
$\triangle T(R)=$ number of tuples in R
区E．g．may need when R is unclustered
$\triangle V(R, a)=$ number of distinct values of the attribute a

Sorting

HIIlustrates the difference in algorithm design when your data is not in main memory：囚Problem：sort 1 Gb of data with 1 Mb of RAM．
$\mathscr{H} A r i s e s$ in many places in database systems：
\triangle Data requested in sorted order（ORDER BY）
囚Needed for grouping operations
囚First step in sort－merge join algorithm
＠Duplicate removal
©Bulk loading of B＋－tree indexes．

2－Phase Merge－sort： Requires 3 Buffers

ஆPhase 1：Read a page，sort it，write it．囚only one buffer page is used
ஆPhase 2：Merge all sorted sublists
囚 three buffer pages used．

Can We Do Better？

－We have more main memory
－Should use it to improve performance

Cost Model for Our
 Analysis

HB：Block size
HM：Size of main memory
\＆N：Number of records in the file
HR：Size of one record

Phase Two

HMerge M / B－ 1 runs into a new run HResult：runs have now $M / R(M / B-1)$ records

Cost of External Merge

Sort

H Number of passes：$\quad 1+\left\lceil\log _{M / B-1}\lceil N R / M\rceil\right.$
\mathscr{H} Think differently
囚Given $B=4 \mathrm{~KB}, \mathrm{M}=64 \mathrm{MB}, \mathrm{R}=0.1 \mathrm{~KB}$
囚Pass 1：runs of length $M / R=640000$
区Have now sorted runs of 640000 records
\triangle Pass 2：runs increase by a factor of $M / B-1=16000$区Have now sorted runs of $10,240,000,000=10^{10}$ records
囚Pass 3：runs increase by a factor of $M / B-1=16000$区Have now sorted runs of 10^{14} records खNobody has so much data ！
HCan sort everything in 2 or 3 passes ！

External Merge－Sort

भPhase one：load M bytes in memory，sort囚Result：runs of length M / R records

Phase Three

HMerge $M / B-1$ runs into a new run HResult：runs have now $M / R(M / B-1)^{2}$ records

Cost of the Scan Operator

HClustered relation：
هTable scan：$B(R)$ ；to sort： $3 B(R)$
囚Index scan：$B(R)$ ；to sort：$B(R)$ or $3 B(R)$
HUnclustered relation
囚 $T(R)$ ；to sort：$T(R)+2 B(R)$

One-Pass Algorithms

Selection $\sigma(R)$, projection $\Pi(R)$
HBoth are tuple-at-a-Time algorithms
\%Cost: $B(R)$

One-pass Algorithms

Duplicate elimination $\delta(\mathrm{R})$
HNeed to keep tuples in memory
\&When new tuple arrives, need to compare
it with previously seen tuples
$\mathscr{H} B a l a n c e d$ search tree, or hash table
HCost: B(R)
\%Assumption: $B(\delta(R))<=M$

One-pass Algorithms

Grouping: $\gamma_{\text {city, sum(price) }}(\mathrm{R})$
HNeed to store all cities in memory
$\mathscr{H} A l s o$ store the sum(price) for each city
HBalanced search tree or hash table
HCost: B(R)
HAssumption: number of cities fits in memory

One-pass Algorithms

Binary operations: $\mathrm{R} \cap \mathrm{S}, \mathrm{R} \mathrm{U} \mathrm{S}, \mathrm{R}-\mathrm{S}$
HAssumption: $\min (B(R), B(S))<=M$
\mathscr{H} Scan one table first, then the next, eliminate duplicates
HCost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$

Nested Loop Joins

HTuple-based nested loop $\mathrm{R} \bowtie \mathrm{S}$

For each tuple r in R do
For each tuple s in S do
if r and s join then output (r, s)
\&Cost: $T(R) T(S)$, sometimes $T(R) B(S)$

Nested Loop Joins

HBlock-based Nested Loop Join

For each ($\mathrm{M}-1$) blocks bs of S do for each block br of R do for each tuple s in bs for each tuple r in $b r$ do if r and s join then output (r, s)

Nested Loop Joins

Nested Loop Joins

HBlock－based Nested Loop Join
HCost：
囚Read S once：cost B（S）
囚Outer loop runs $B(S) /(M-1)$ times，and each time need to read R ：costs $B(S) B(R) /(M-1)$
囚Total cost：$B(S)+B(S) B(R) /(M-1)$
H Notice：it is better to iterate over the smaller relation first
HR $\bowtie S: ~ R=o u t e r ~ r e l a t i o n, ~ S=i n n e r ~ r e l a t i o n ~$

Two－Pass Algorithms
 Based on Sorting

Duplicate elimination $\delta(\mathrm{R})$
\mathscr{H} Trivial idea：sort first，then eliminate duplicates
\＆Step 1：sort chunks of size M，write囚 cost 2B（R）
HStep 2：merge $\mathrm{M}-1$ runs，but include each tuple only once囚cost B（R）
H Total cost： $3 B(R)$ ，Assumption：$B(R)<=M^{2}$

Two－Pass Algorithms
 Based on Sorting

Grouping：$\gamma_{\text {city，sum（price）}}(R)$
HSame as before：sort，then compute the sum（price）for each group
HAs before：compute sum（price）during the merge phase．
HTotal cost： $3 \mathrm{~B}(\mathrm{R})$
HAssumption：$B(R)<=M^{2}$

Two－Pass Algorithms

Based on Sorting

Binary operations： $\mathrm{R} \cap \mathrm{S}, \mathrm{R} \operatorname{US}, \mathrm{R}-\mathrm{S}$
\＆Idea：sort R ，sort S ，then do the right thing HA closer look：
©Step 1：split R into runs of size M ，then split S into runs of size M ．Cost： $2 B(R)+2 B(S)$
区Step 2：merge $M / 2$ runs from R ；merge $M / 2$ runs from S ；ouput a tuple on a case by cases basis
H Total cost： $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
HAssumption：$B(R)+B(S)<=M^{2}$

Two－Pass Join Algorithms Based on Sorting

H Start by sorting both R and S on the join attribute：
©Cost： $4 \mathrm{~B}(\mathrm{R})+4 \mathrm{~B}(\mathrm{~S}) \quad$（because need to write to disk）
HRead both relations in sorted order，match tuples
®Cost： $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
HeDifficulty：many tuples in R may match many in S

囚If at least one set of tuples fits in M，we are OK囚Otherwise need nested loop
هTotal cost： $5 B(R)+5 B(S)$
囚Assumption：$B(R)<=M^{2}, B(S)<=M^{2}$

Two－Pass Algorithms
 Based on Sorting

Join $R \bowtie S$

HIf the number of tuples in R matching those in S is small（or vice versa）we can compute the join during the merge phase
HTotal cost：3B（R）＋3B（S）
HAssumption：$B(R)+B(S)<=M^{2}$

Two Pass Algorithms Based on Hashing

HIdea：partition a relation R into buckets，on disk
HEach bucket has size approx．$B(R) / M$

\mathscr{H} Does each bucket fit in main memory ？ \triangle Yes if $B(R) / M<=M$ ，i．e．$B(R)<=M^{2}$ 51

Hash Based Algorithms for δ

\mathscr{H} Recall：$\delta(\mathrm{R})=$ duplicate elimination
HStep 1．Partition R into buckets
\％Step 2．Apply δ to each bucket（may read in main memory）
HCost： $3 \mathrm{~B}(\mathrm{R})$
HAssumption：$B(R)<=M^{2}$

Hash Based Algorithms for

γ

HRecall：$\gamma(R)=$ grouping and aggregation
\＆Step 1．Partition R into buckets
HStep 2．Apply γ to each bucket（may read in main memory）
\＆Cost：3B（R）
HAssumption：$B(R)<=M^{2}$

Hash－based Join

$$
\mathscr{H R} \bowtie S
$$

HRecall the main memory hash－based join：
囚Scan S，build buckets in main memory囚Then scan R and join

Partitioned Hash Join

$R \bowtie S$
HStep 1：
©Hash S into M buckets
囚send all buckets to disk
\％Step 2
囚Hash R into M buckets
囚Send all buckets to disk
\％Step 3
囚Join every pair of buckets

Hybrid Hash Join Algorithm

HPartition S into k buckets
HBut keep first bucket S_{1} in memory，$k-1$ buckets to disk
HPartition R into k buckets
\triangle First bucket R_{1} is joined immediately with S_{1}囚Other $k-1$ buckets go to disk
\＆Finally，join $k-1$ pairs of buckets：
$\triangle\left(R_{2}, S_{2}\right),\left(R_{3}, S_{3}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Join Algorithm

HHow big should we choose k ？
HAverage bucket size for S is $B(S) / k$
HNeed to fit $B(S) / k+(k-1)$ blocks in memory
囚 $\mathrm{B}(\mathrm{S}) / \mathrm{k}+(\mathrm{k}-1)<=\mathrm{M}$
囚k slightly smaller than $B(S) / M$

Hybrid Join Algorithm

みHow many I／Os ？
HRecall：cost of partitioned hash join： $\triangle 3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
\mathscr{H} Now we save 2 disk operations for one bucket
HRecall there are k buckets
HHence we save $2 / k(B(R)+B(S))$
HCost：$(3-2 / k)(B(R)+B(S))=$

$$
(3-2 M / B(S))(B(R)+B(S))
$$

