Introduction to Database Systems

CSE 444

Lecture \＃15
Feb 282001

Review of Selected

 Material
Announcement

H Project Report due today \＆HW\＃4 available on the web

囚Optional，but you can only benefit from it！ \＆Lecture on March 5

囚Given by Vivek Narasayya（my colleague）
囚Material included in Finals
囚Discussion on Finals postponed to beginning of lecture on March 7
HWatch posting on mailing list
囚Limited exclusion of material

Insertion in Extensible Hash Table

\＆Insert 1110

Insertion in Extensible Hash Table

HNow insert 1010

HNeed to extend table，split blocks भi becomes 2

Insertion in Extensible Hash Table

HNow insert 1110

Insertion in Extensible Hash Table

HNow insert 0000，then 0101

Linear Hash Table Example

HN＝3

Linear Hash Table Extension

Insertion in Extensible Hash Table

HAfter splitting the block

Linear Hash Table Example

HIInsert 1000：overflow blocks．．．

Compressed BitMaps：Run Length Encoding

HRepresent sequence of I 0－s followed by 1 as a binary encoding of I
HConcatenate codes for each run together囚But，must be able to recover runs
HScheme
囚B＿I＝\＃of bits in binary encoding of I囚Represent as B＿I－ 1 1－s followed by 0 and then binary encoding of I

Indexes: Compressed BitMap

\&Decode: (11101101001011)

HRun-Length: $(13,0,3):$ Why?
\&0000000000000110001
HNote: Trailing 0-s not recovered

Indexing: When are indexes useful?

\&Select Name, Age
HFrom Person
HWhere Person.salary > 100 K and
Person.state IN [NY, CA, WA]
HGroup By City

Query Execution (Contd.)

Required Reading: 2.3.3-2.3.5, 6.1-6.7
Suggested Reading: 6.8, 6.9

2-Way Merge Sort

Multiway Merge－Sort

HPhase one：load M bytes in memory，sort囚Result：runs of length M / R records

Phase Three

\mathscr{H} Merge $M / B-1$ runs into a new run HResult：runs have now $M / R(M / B-1)^{2}$ records

Logical and Physical Operators

Phase Two

HMerge M / B－ 1 runs into a new run \＆Result：runs have now $M / R(M / B-1)$ records

Cost of External Merge Sort

H Number of passes：$\quad 1+\left\lceil\log _{M / B-1}\lceil N R / M\rceil\right\rceil$
\＆Think differently
囚Given $B=4 \mathrm{~KB}, \mathrm{M}=64 \mathrm{MB}, \mathrm{R}=0.1 \mathrm{~KB}$
\triangle Pass 1：runs of length $M / R=640000$
区Have now sorted runs of 640000 records
\triangle Pass 2：runs increase by a factor of $M / B-1=16000$区Have now sorted runs of $10,240,000,000=10^{10}$ records
囚Pass 3：runs increase by a factor of $M / B-1=16000$区Have now sorted runs of $10{ }^{14}$ records区Nobody has so much data！
HCan sort everything in 2 or 3 passes ！

Estimating the Cost of Operators

HVery important for the optimizer（next week）
HParameters for a relation R
$\triangle B(R)=$ number of blocks holding R
区Meaningful if R is clustered
$\triangle T(R)=$ number of tuples in R
区E．g．may need when R is unclustered
$\triangle V(R, a)=$ number of distinct values of the attribute a

Scanning Tables

\mathscr{H} The table is clustered
囚Table－scan：if we know where the blocks are \mathscr{H} The table is unclustered（e．g．its records are placed on blocks with other tables）囚May need one read for each record HAlso，index scan（discussed later）

Sorting While Scanning

\mathscr{H} Sometimes it is useful to have the output sorted
\＆Three ways to scan it sorted：囚If it fits in memory，sort there囚If not，use multiway merging

Cost of the Scan Operator

HClustered relation：
$\triangle B(R)$ ；to sort： $3 B(R)$
HUnclustered relation
囚 $T(R)$ ；to sort：$T(R)+2 B(R)$

One－pass Algorithms

Grouping：$\gamma_{\text {city，sum（price）}}(\mathrm{R})$
HNeed to store all cities in memory
\＆Also store the sum（price）for each city
HBalanced search tree or hash table
HCost：$B(R)$
$\mathscr{H A s s u m p t i o n : ~ n u m b e r ~ o f ~ c i t i e s ~ f i t s ~ i n ~}$ memory

Nested Loop Joins

HBlock－based Nested Loop Join

For each（M－1）blocks bs of S do for each block br of R do for each tuple s in bs for each tuple r in br do if r and s join then output (r, s)

Nested Loop Joins

Nested Loop Joins

HBlock－based Nested Loop Join

H Cost：
©Read S once：cost B（S）
囚Outer loop runs $\mathrm{B}(\mathrm{S}) /(\mathrm{M}-1)$ times，and each time need to read R ：costs $B(S) B(R) /(M-1)$
बTotal cost： $\mathrm{B}(\mathrm{S})+\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-1)$
\mathscr{H} Notice：it is better to iterate over the smaller relation first
$\mathscr{H} \mathrm{R} \bowtie \mathrm{S}: \mathrm{R}=$ outer relation， $\mathrm{S}=$ inner relation

Two－Pass Algorithms

Based on Sorting

HRecall：multi－way merge sort needs only two passes ！
HAssumption：$B(R)<=M^{2}$
HCost for sorting： $3 B(R)$

Two－Pass Algorithms
 Based on Sorting

Grouping：$\gamma_{\text {city，sum（price）}}(\mathrm{R})$
HSame as before：sort，then compute the sum（price）for each group
HAs before：compute sum（price）during the merge phase．
\＆Total cost：3B（R）
HAssumption：$B(R)<=M^{2}$

Two－Pass Algorithms
 Based on Sorting

Join $R \bowtie S$
HIf the number of tuples in R matching those in S is small（or vice versa）we can compute the join during the merge phase
HTotal cost： $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
\＆Assumption：$B(R)+B(S)<=M^{2}$

Two－Pass Join Algorithms Based on Sorting

HStart by sorting both R and S on the join attribute：
\triangle Cost： $4 \mathrm{~B}(\mathrm{R})+4 \mathrm{~B}(\mathrm{~S})$（because need to write to disk）
HRead both relations in sorted order，match tuples
区Cost： $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
HDifficulty：many tuples in R may match many in S
©If at least one set of tuples fits in M ，we are OK ©Otherwise need nested loop
区Total cost： $5 B(R)+5 B(S)$
囚Assumption：$B(R)<=M^{2}, B(S)<=M^{2}$

Two Pass Algorithms Based on Hashing

HIdea：partition a relation R into buckets，on disk
HEach bucket has size approx．$B(R) / M$

HDoes each bucket fit in main memory ？囚Yes if $B(R) / M<=M$ ，i．e．$B(R)<=M^{2}$

Hash Based Algorithms for δ

HRecall：$\delta(R)=$ duplicate elimination
HStep 1．Partition R into buckets
\＆Step 2．Apply δ to each bucket（may read in main memory）
HCost： $3 B(R)$
HAssumption：$B(R)<=M^{2}$

Hash Based Algorithms for

γ

みRecall：$\gamma(R)=$ grouping and aggregation
\＆Step 1．Partition R into buckets
HStep 2．Apply γ to each bucket（may read in main memory）
\＆Cost：3B（R）
HAssumption：$B(R)<=M^{2}$

Partitioned Hash Join

R \bowtie S
HStep 1：
囚Hash S into M buckets
囚send all buckets to disk
\％Step 2

囚Send all buckets to disk
\＆Step 3
囚Join every pair of buckets

Hash－based Join

```
HR \bowtie\DeltaS
```

HRecall the main memory hash－based join：
囚Scan S，build buckets in main memory囚Then scan R and join

Partitioned Hash Join

HCost： $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
HAssumption： $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join Algorithm

HPartition S into k buckets
HBut keep first bucket S_{1} in memory，$k-1$ buckets to disk
HPartition R into k buckets
\triangle First bucket R_{1} is joined immediately with S_{1}囚Other $\mathrm{k}-1$ buckets go to disk
\＆Finally，join $k-1$ pairs of buckets： $\triangle\left(R_{2}, S_{2}\right),\left(R_{3}, S_{3}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Join Algorithm

HHow big should we choose k ？
HAverage bucket size for S is $B(S) / k$
HNeed to fit $B(S) / k+(k-1)$ blocks in memory
囚 $\mathrm{B}(\mathrm{S}) / \mathrm{k}+(\mathrm{k}-1)<=\mathrm{M}$
囚k slightly smaller than $B(S) / M$

Hybrid Join Algorithm

HHow many I／Os ？
\mathscr{H} Recall：cost of partitioned hash join：囚 $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
\mathscr{H} Now we save 2 disk operations for one bucket
\mathscr{H} Recall there are k buckets
\＆Hence we save $2 / k(B(R)+B(S))$
\＆Cost：$(3-2 / k)(B(R)+B(S))=$

$$
(3-2 M / B(S))(B(R)+B(S))
$$

Indexed Based Algorithms

HRecall that in a clustered index all tuples with the same value of the key are clustered on as few blocks as possible

HClustered index on a：cost $B(R) / V(R, a)$
HUnclustered index on a：cost $T(R) / V(R, a)$
HClustered index on a： $\operatorname{cost} B(R) / V(R, a)$
HUnclustered index on a： $\operatorname{cost} T(R) / V(R, a)$

Index Based Selection

HSelection on equality：$\sigma_{\mathrm{a}=\mathrm{v}}(\mathrm{R})$

Index Based Selection

HExample：$B(R)=2000, T(R)=100,000, V(R, a)$
$=20$ ，compute the cost of $\sigma_{a=v}(R)$
ஆ Cost of table scan：
©If R is clustered：$B(R)=2000 \mathrm{I} / \mathrm{Os}$
囚If R is unclustered：$T(R)=100,000 I / O s$
H Cost of index based selection：
区If index is clustered：$B(R) / V(R, a)=100$
囚If index is unclustered：$T(R) / V(R, a)=5000$
\mathscr{H} Notice：when $V(R, a)$ is small，then unclustered index is useless

Index Based Join

HR \propto
\mathscr{H} Assume S has an index on the join attribute
HIterate over R，for each tuple fetch corresponding tuple（s）from S
HAssume R is clustered．Cost： ©If index is clustered：$B(R)+T(R) B(S) / V(S, a)$
©If index is unclustered：$B(R)+T(R) T(S) / V(S, a)$

Index Based Join

HAssume both R and S have a sorted index （ $B+$ tree）on the join attribute
ஆThen perform a merge join（called zig－zag join）
HCost：$B(R)+B(S)$

Optimization

$\mathscr{H} A l g e b r a i c ~ l a w s ~ p r o v i d e ~ a l t e r n a t i v e ~$ execution plans
HEstimate costs of alternative modes of execution
$\mathscr{H E f f i c i e n t l y ~ s e a r c h ~ t h e ~ s p a c e ~ o f ~ a l t e r n a t i v e s ~}$
囚Simplify search by applying heuristics （without costing）
区apply laws that seem to result in cheaper plans

Converting from SQL to Logical Plans

Select a1，．．．，an
From R1，．．．，Rk
Where C
$\Pi_{\mathrm{a} 1, \ldots, \mathrm{an}}\left(\sigma_{\mathrm{C}}(\mathrm{R} 1 \bowtie \mathrm{R} 2 \bowtie \quad . . \bowtie \mathrm{Rk})\right)$

Converting from SQL to Logical Plans

Select a1，．．．，an
From R1，．．．，Rk
Where C
Group by b1，．．．，bl
$\Pi_{a 1, \ldots, a n}\left(\gamma_{b 1}, \ldots, b m\right.$, aggs $\left(\sigma_{c}(R 1 \bowtie R 2 \bowtie\right.$
$\bowtie R k)$ ））

Algebraic Laws

HCommutative and Associative Laws $\triangle R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) U T$ $\triangle R \cap S=S \cap R, R \cap(S \cap T)=(R \cap S) \cap T$ $\triangle R \bowtie S=S \bowtie A, R \triangleright(S \bowtie \triangleleft T)=(R \triangleright \triangleleft)$
$\triangleright \triangleleft T$
ஆDistributive Laws

$$
\boxtimes R \bowtie \Delta(S \cup T)=(R \triangleright \triangleleft S) \cup(R \triangleright \triangleleft T)
$$

Algebraic Laws

HLaws involving selection：
囚 $\sigma_{C \text { AND } C^{\prime}}(R)=\sigma_{C}\left(\sigma_{C^{\prime}}(R)\right)=\sigma_{C}(R) \cap \sigma_{C^{\prime}}(R)$
囚 $\sigma_{C O R C^{\prime}}(R)=\sigma_{C}(R) U \sigma_{C^{\prime}}(R)$
囚 $\sigma_{C}\left(R_{\triangleright} S\right)=\sigma_{C}(R) \triangleright \triangleleft S$
\boxtimes When C involves only attributes of R
囚 $\sigma_{C}(R-S)=\sigma_{C}(R)-S$
$\boxtimes \sigma_{C}(R \cup S)=\sigma_{C}(R) U \sigma_{C}(S)$
囚 $\sigma_{C}(R \cap S)=\sigma_{C}(R) \cap S$

Algebraic Laws

ஆExample：R（A，B，C，D），S（E，F，G）
囚 $\sigma_{F=3}(R \underset{D=E}{ } S)=$
？
$\triangle \sigma_{A=5 \text { AND } G=9}\left(R_{D=E}^{\infty} S\right)=$

$$
?
$$

Algebraic Laws

HLaws involving projections
囚 $\Pi_{M}(R \triangleright \triangleleft S)=\Pi_{N}\left(\Pi_{P}(R) \bowtie \Pi_{Q}(S)\right)$
\boxtimes Where N, P, Q are appropriate subsets of attributes of M
囚 $\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M, N}(R)$
\＆Example $R(A, B, C, D), S(E, F, G)$

Heuristic：Predicate
Pushdown

The earlier we process selections，less tuples we need to manipulate higher up in the tree（but may cause us to loose an important ordering of the tuples）．

Determining Join Order

HSelect－project－join
HPush selections down，pull projections up HHence：we need to choose the join order $\mathscr{H} T h i s$ is the main focus of an optimizer

