

Query Optimization: Phases

- Parsing phase

I Produces a parse tree

- Query-Rewrite phase

I Produces a logical tree

- Physical Query plan generation

I Produces executable (physical) plan
\(\left.\begin{array}{|c|}\hline Query Optimization:

Phases\end{array}\right]\)| I Parsing phase |
| :--- |
| I Produces a parse tree |
| Query-Rewrite phase |
| I Produces a logical tree |
| - Physical Query plan generation |
| I Produces executable (physical) plan |
| |
| |

Query Optimization

Required Reading: 7.2, 7.4, 7.5, 7.6

Query Optimization

- Algebraic laws provide alternative execution plans
- Estimate costs of alternative modes of execution
- Efficiently search the space of alternatives

I Simplify search by applying heuristics (without costing)
I apply laws that seem to result in cheaper plans

Converting from SQL to Logical Plans

Select a1, ..., an
From R1, ..., Rk
Where C

Converting from SQL to Logical Plans

Select a1, ..., an
From R1, ..., Rk
Where C
Group by b1, ..., bl
 rimk))

Algebraic Laws

【 Commutative and Associative Laws
I $R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) U T$
I $R \cap S=S \cap R, R \cap(S \cap T)=(R \cap S) \cap T$

© T

- Distributive Laws

Algebraic Laws: Selection

- Laws involving selection:

I $\sigma_{C \text { AND }}(R)=\sigma_{C}\left(\sigma_{C}(R)\right)=\sigma_{C}(R) \cap \sigma_{C}(R)$
I $\sigma_{C O R C^{\prime}}(R)=\sigma_{C}(R) U \sigma_{C^{\prime}}(R)$
I $\sigma_{C}(R)$
। When C involves only attributes of R
I $\sigma_{C}(R-S)=\sigma_{C}(R)-S$
I $\sigma_{C}(R \cup S)=\sigma_{C}(R) U \sigma_{C}(S)$
I $\sigma_{C}(R \cap S)=\sigma_{C}(R) \cap S$

Algebraic Laws: Selection

- Example: R(A, B, C, D), S(E, F, G)

I $\sigma_{F=3}\left(\mathrm{R}_{\mathrm{D}=\mathrm{E}}^{\mathrm{j}} \mathrm{E}\right)=$
I $\sigma_{A=5 \text { AND G }=9}\left(\mathrm{R}_{\mathrm{D}=\mathrm{E}}^{\mathrm{q}=\mathrm{E}} \mathrm{S}\right)=$
earlier we process selections, less tuples we need to manipulate higher up in the tree (but may cause us to lose an important ordering of the tuples)

Algebraic Laws: Projection

- Laws involving projections

I Where N, P, Q are appropriate subsets of attributes of M
I $\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M, N}(R)$
- Example $R(A, B, C, D), S(E, F, G)$

Other Algebraic Laws

- Duplicate Elimination

- Grouping

I $\delta\left(\gamma_{L}(R)\right)=\gamma_{L L}(R), \ldots$
I Many transformations depend on aggregate I MAX, SUM etc.

Cost Estimation

- For a given logical plan, there may be many possible physical plans
I We want to choose physical plan with lowest execution cost
I Goal: For a given physical plan, estimate cost without executing the query

Cost Estimation

I Ideally should be...
I Accurate
I Easy to compute
I Consistent
I E.g. cardinality should not depend on join order
I Reality ...
I?

Estimating Size of Projection

- Projection does not change number of tuples
I Size estimate depends on length of columns
I Example: $\mathrm{R}(\mathrm{a}, \mathrm{b}, \mathrm{c}): \mathrm{a}, \mathrm{b}$ are integers, c string of 100 bytes. Tuple header $=12$ bytes, Block size $=1024$
- $\pi_{\mathrm{a}, \mathrm{b}, \mathrm{c}}(\mathrm{R})=$? $\pi_{\mathrm{a}, \mathrm{b}}(\mathrm{R})=$?

I What if c is variable length string?

Estimating Size of Join

I $R(a, b), S(b, c)$, estimate $T(R j S)$
I Problem: Don't know how values of R.b and S.b are related

I May be disjoint sets of values => $T\left(\mathrm{Rjp}_{\mathrm{p}}^{\mathrm{s}} \mathrm{S}\right)=0$
I S.b may be key of S and R.b may be foreign key $=>T(R \geqslant S)=T(R)$

- Estimate for $\mathrm{T}(\mathrm{R} \mathrm{r} \boldsymbol{*} \mathrm{S})$

I $\mathrm{T}(\mathrm{R}) \mathrm{T}(\mathrm{S}) / \max (\mathrm{V}(\mathrm{R}, \mathrm{b}), \mathrm{V}(\mathrm{S}, \mathrm{b}))$

Estimating Size of Join

I Example: $T(R)=1000, T(S)=2000, V(R, b)$
$=20, \mathrm{~V}(\mathrm{~S}, \mathrm{~b})=50$

- $T\left(R^{\top} \leqslant S\right)=$?

Estimating Size of Join

- What happens if query has multiple join attributes?
I Example: $\mathrm{R}(\mathrm{a}, \mathrm{b}, \mathrm{c}), \mathrm{S}(\mathrm{b}, \mathrm{c}, \mathrm{d})$
I Estimate = ?
【 What happens if query has joins of many relations?
I Example: R(a,b), $\mathrm{S}(\mathrm{b}, \mathrm{c}), \mathrm{U}(\mathrm{b}, \mathrm{e})$
I Estimate = ?

Estimating Size of Other Operators

- Union (R, S)

I Bag Union: $T(R)+T(S)$
I Set Union: $\operatorname{Max}(\mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S}))+\operatorname{Min}(\mathrm{T}(\mathrm{R}), \mathrm{T}(\mathrm{S})) / 2$

- Intersection (R, S)

I $\operatorname{Min}(T(R), T(S)) / 2$

- Difference (R,S)

I T(R)-T(S)/2

- Duplicate Elimination

Cost Based Plan Selection

- Estimates for size parameters

I Use statistics, e.g. histograms
I Enumerating physical plans

Histograms

【 Popular in commercial DBMSs

- Can give much more accurate cost estimates
- Many types of histograms

I Equal-width
I Equal-depth
I Frequent values
I ...

Equal-width Histogram

I Each bucket in histogram has same width
I Example: Values $=\{2,5,23,25,29,31\}$
I Range Count
| 1-10 2
| 11-20 0
| 21-30 3
(31-40 1

- $\mathrm{T}\left(\sigma_{\mathrm{A} \leq 20}(\mathrm{R})\right)=2$

Equi-depth Histogram

- Each bucket in histogram has same number of values
- Example: $\{2,5,33,35,39,41\}$

I Bucket Boundary
15
135
141

Frequent Values

- Keep exact counts of frequent values
- Total count of all other (non-frequent) values
- Example: Values $=\{1,3,4,4,4,4,4,9\}$
\| Histogram: 4: 5, Others: 3

Using Histogram for Size Estimation

- Example: $\mathrm{R}(\mathrm{a}, \mathrm{b}) \quad \mathrm{S}(\mathrm{b}, \mathrm{c})$.
- Histograms:

I R.b: 1:200, 0:150, 5:100, Others:550
I S.b: 0:100, 1:80, 2:70, Others:250

- Size of join = ?

Creating and Maintaining Statistics in a DBMS

- For large tables, creating/refreshing statistics can be expensive
- Alternatives:

I Refresh statistics only after many changes to data
I Incremental updating
I Sampling - need to be careful...

Enumerating Physical Plans

- Exhaustive - Consider all possible:

I Join Orders
I Algorithms for each operator

- Heuristic Search

I E.g. Greedy approach
I Pick next relation such that join size is smallest

Enumerating Physical Plans

- Branch-and-Bound Enumeration

I Find a good starting plan (having cost C)
I In subsequent search, eliminate any subquery with cost > C

- Hill Climbing

I Start with heuristically selected plan
I Explore plans in the "neighborhood" I E.g. replace Nested-Loops join with Hash-Join

Enumerating Physical Plans

- Dynamic Programming

I Bottom-up strategy
I For each subexpression, only keep plan with the least cost
I Consider possible implementations of each node assuming
I Extension: also consider interesting orders I E.g., when subexpression is sorted on a sort attribute at the node
I More later

Determining Join Order
I Select-project-join
I Push selections down, pull projections up
I Hence: we need to choose the join order
I This is the main focus of an optimizer

Bushy Join Trees

Determining Join Order: Join Trees

【R1 $\bowtie \mathrm{R} 2 \bowtie \quad \ldots . \bowtie \mathrm{Rn}$
| Join tree:

I A join tree represents a plan. An optimizer needs to inspect many (all ?) join trees

Dynamic Programming

I For each subquery $\mathrm{Q}\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}$ compute the following:
I Size(Q)
I A best plan for Q: Plan(Q)
I The cost of that plan: $\operatorname{Cost}(\mathrm{Q})$

Dynamic Programming

- Step 1: For each $\{R i\}$ do:

I Size $(\{R i\})=B(R i)$
I Plan(\{Ri\})=Ri
I $\operatorname{Cost}(\{\mathrm{Ri}\})=($ cost of scanning Ri)

Dynamic Programming

【 Step i: For each Q $\{R 1, \ldots, R n\}$ of cardinality i do:
I Compute Size(Q)
I For every pair of subqueries $Q^{\prime}, Q^{\prime \prime}$ s.t. $\mathrm{Q}=\mathrm{Q}^{\prime} \mathrm{U} \mathrm{Q}^{\prime \prime}$ compute cost(Plan(Q') \bowtie Plan(Q"))
I $\operatorname{Cost}(\mathrm{Q})=$ the smallest such cost
I Plan $(\mathrm{Q})=$ the corresponding plan

Dynamic Programming

- Return Plan(\{R1, ..., Rn\})

Dynamic Programming

To illustrate, we will make the following simplifications:

- $\operatorname{Cost}(\mathrm{P} 1 \bowtie \mathrm{P} 2)=\operatorname{Cost}(\mathrm{P} 1)+\operatorname{Cost}(\mathrm{P} 2)+$ size(intermediate result(s))
I Intermediate results:
I If P1 = a join, then the size of the intermediate result is size $(\mathrm{P} 1)$, otherwise the size is 0
I Similarly for P2
- Cost of a scan $=0$

Dynamic Programming

- Example:
- $\operatorname{Cost}(\mathrm{R} 5 \bowtie \mathrm{R} 7)=0 \quad$ (no intermediate results)
- $\operatorname{Cost}((R 2 \bowtie R 1) \bowtie R 7)$
$=\operatorname{Cost}(R 2 \bowtie R 1)+\operatorname{Cost}(R 7)+\operatorname{size}(R 2 \bowtie R 1)$
$=\operatorname{size}(R 2 \bowtie R 1)$

Dynamic Programming

- We used naïve size/cost estimations

I In practice:
I More realistic size/cost estimations
I Heuristics for Reducing the Search Space
I Restrict to left linear trees
। Restrict to trees "without cartesian product"
I Need more than just one plan for each subquery:
| "interesting orders"

