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Systems
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Query Optimization

Required Reading: 7.2, 7.4, 7.5, 7.6
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Query Optimization: 
Phases

❚ Parsing phase
❙ Produces a parse tree

❚ Query-Rewrite phase
❙ Produces a logical tree

❚ Physical Query plan generation
❙ Produces executable (physical) plan
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Query Optimization

❚ Algebraic laws provide alternative 
execution plans

❚ Estimate costs of alternative modes of 
execution

❚ Efficiently search the space of alternatives
❙ Simplify search by applying heuristics 

(without costing)
❘ apply laws that seem to result in cheaper plans
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Converting from SQL to 
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C

Πa1,…,an(σ C(R1      R2       …     Rk))✞ ✜ ✞ ✜ ✞ ✜
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Converting from SQL to 
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C
Group by b1, …, bl

Πa1,…,an(γ b1, …, bm, aggs (σ C(R1      R2        …..    
Rk)))

✞ ✜ ✞ ✜

✞ ✜



2

7

Algebraic Laws

❚ Commutative and Associative Laws
❙ R U S = S U R,  R U (S U T) = (R U S) U T
❙ R ∩ S = S ∩ R,  R ∩ (S ∩ T) = (R ∩ S) ∩ T
❙ R     S = S     R,  R     (S      T) = (R     S)     

T

❚ Distributive Laws
❙ R     (S U T)  =  (R    S)  U  (R     T)

✞ ✜ ✞ ✜ ✞ ✜ ✞ ✜
✞ ✜

✞ ✜

✞ ✜ ✞ ✜ ✞ ✜
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Algebraic Laws: Selection

❚ Laws involving selection:
❙ σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
❙ σ C OR C’(R) = σ C(R) U σ C’(R)
❙ σ C (R      S) = σ C (R)      S 

❘ When C involves only attributes of R

❙ σ C (R – S) = σ C (R) – S
❙ σ C (R U S) = σ C (R) U σ C (S)
❙ σ C (R ∩ S)  = σ C (R) ∩ S

✞ ✜ ✞ ✜
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Algebraic Laws: Selection

❚ Example:  R(A, B, C, D), S(E, F, G)
❙ σ F=3 (R      S) =                                     ?
❙ σ A=5 AND G=9 (R      S) =                         ?

✞ ✜
D=E

✞ ✜
D=E
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Heuristic: Predicate 
Pushdown

Product Company

maker=name

σσσσ price>100 AND city=“Seattle”

pname

Product Company

maker=name

price>100

pname

city=“Seattle”

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to lose an important ordering
of the tuples).
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Algebraic Laws: Projection

❚ Laws involving projections
❙ ΠM(R     S) = ΠN(ΠP(R)      ΠQ(S))

❘ Where N, P, Q are appropriate subsets of 
attributes of M

❙ ΠM(ΠN(R)) = ΠM,N(R)

❚ Example R(A,B,C,D), S(E, F, G)
❙ ΠA,B,G(R      S) = Π ? (Π?(R)       Π?(S)) 

✞ ✜ ✞ ✜

✞ ✜ ✞ ✜
D=E D=E

12

Other Algebraic Laws

❚ Duplicate Elimination
❙ δ(R    S) = δ(R)     δ(S), …

❚ Grouping
❙ δ(γL(R)) = γLL(R), …
❙ Many transformations depend on aggregate

❘ MAX, SUM etc.

✞ ✜ ✞ ✜
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Cost Estimation

❚ For a given logical plan, there may be 
many possible physical plans

❚ We want to choose physical plan with 
lowest execution cost

❚ Goal: For a given physical plan, estimate 
cost without executing the query
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Cost Estimation

❚ Ideally should be…
❙ Accurate
❙ Easy to compute
❙ Consistent

❘ E.g. cardinality should not depend on join order

❚ Reality …
❙ ?
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Estimating Size of Selection

❚ How to estimate size of S = σ A=20(R) ?
❚ Approach 1: Guess!

❙ Surprisingly popular method e.g. T(R)/10
❚ Approach 2: Use statistics

❙ T(S) = T(R)/V(R,A)
Where V(R,A) = number of distinct values of A in R 

❚ How about S = σ A≤ 20(R) ?
❙ Guess: T(R)/3
❙ Statistics: Use histogram if available (more later)
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Estimating Size of Projection

❚ Projection does not change number of 
tuples 

❚ Size estimate depends on length of 
columns 

❚ Example: R(a,b,c): a, b are integers, c 
string of 100 bytes. Tuple header = 12 
bytes, Block size = 1024

❚ πa,b,c(R) = ? πa,b(R) = ?
❚ What if c is variable length string?
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Estimating Size of Join

❚ R(a,b), S(b,c), estimate T(R    S)
❚ Problem: Don’t know how values of R.b and 

S.b are related
❙ May be disjoint sets of values => T (R    S) = 0
❙ S.b may be key of S and R.b may be foreign 

key => T(R    S) = T(R)
❚ Estimate for T(R    S) 

❙ T(R)T(S)/max(V(R,b), V(S,b))

✞ ✜

✞ ✜

✞ ✜

✞ ✜
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Estimating Size of Join

❚ Example: T(R)=1000, T(S)=2000, V(R,b) 
= 20, V(S,b) = 50

❚ T(R    S) = ?✞ ✜
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Estimating Size of Join

❚ What happens if query has multiple join 
attributes? 
❙ Example: R(a,b,c), S(b,c,d)
❙ Estimate = ?

❚ What happens if query has joins of many 
relations?
❙ Example: R(a,b), S(b,c), U(b,e)
❙ Estimate = ?
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Estimating Size of Other 
Operators

❚ Union (R,S)
❙ Bag Union: T(R) + T(S) 
❙ Set Union: Max(T(R),T(S)) + Min(T(R),T(S))/2

❚ Intersection (R,S)
❙ Min(T(R),T(S))/2

❚ Difference (R,S)
❙ T(R) - T(S)/2

❚ Duplicate Elimination
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Cost Based Plan Selection 

❚ Estimates for size parameters
❙ Use statistics, e.g. histograms

❚ Enumerating physical plans
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Histograms

❚ Popular in commercial DBMSs
❚ Can give much more accurate cost 

estimates
❚ Many types of histograms

❙ Equal-width
❙ Equal-depth
❙ Frequent values
❙ …
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Equal-width Histogram

❚ Each bucket in histogram has same width
❚ Example: Values = {2,5,23,25,29,31}

❘ Range Count
❘ 1-10 2
❘ 11-20 0
❘ 21-30 3
❘ 31-40 1

❚ T(σ A≤20(R)) = 2
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Equi-depth Histogram

❚ Each bucket in histogram has same 
number of values 

❚ Example: {2,5,33,35,39,41}
❘ Bucket Boundary
❘ 5
❘ 35
❘ 41
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Frequent Values

❚ Keep exact counts of frequent values
❚ Total count of all other (non-frequent) 

values
❚ Example: Values = {1,3,4,4,4,4,4,9}
❚ Histogram: 4: 5, Others: 3
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Using Histogram for Size 
Estimation

❚ Example: R(a,b)     S(b,c). 
❚ Histograms: 

❙ R.b: 1:200, 0:150, 5:100, Others:550
❙ S.b: 0:100, 1:80, 2:70, Others:250

❚ Size of join = ?

✞ ✜
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Creating and Maintaining 
Statistics in a DBMS

❚ For large tables, creating/refreshing 
statistics can be expensive

❚ Alternatives:
❙ Refresh statistics only after many changes to 

data
❙ Incremental updating
❙ Sampling – need to be careful…
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Enumerating Physical Plans

❚ Exhaustive – Consider all possible:
❙ Join Orders
❙ Algorithms for each operator

❚ Heuristic Search
❙ E.g. Greedy approach
❙ Pick next relation such that  join size is 

smallest
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Enumerating Physical 
Plans

❚ Branch-and-Bound Enumeration
❙ Find a good starting plan (having cost C)
❙ In subsequent search, eliminate any subquery 

with cost > C

❚ Hill Climbing
❙ Start with heuristically selected plan
❙ Explore plans in the “neighborhood”

❘ E.g. replace Nested-Loops join with Hash-Join
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Enumerating Physical 
Plans

❚ Dynamic Programming
❙ Bottom-up strategy
❙ For each subexpression, only keep plan with 

the least cost
❙ Consider possible implementations of each 

node assuming 
❙ Extension: also consider interesting orders

❘ E.g., when subexpression is sorted on a sort 
attribute at the node

❙ More later
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Determining Join Order

❚ Select-project-join
❚ Push selections down, pull projections up
❚ Hence: we need to choose the join order
❚ This is the main focus of an optimizer
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Determining Join Order: 
Join Trees

❚ R1       R2        ….       Rn
❚ Join tree:

❚ A join tree represents a plan. An optimizer 
needs to inspect many (all ?) join trees

R3 R1 R2 R4
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Linear Join Trees

❚ Left deep:

R3 R1

R5

R2

R4
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Bushy Join Trees

R3

R1

R2 R4

R5
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Join Ordering Problem

❚ Given: a query  R1     R2      …      Rn
❚ Assume we have a function cost() that 

gives us the cost of every join tree
❚ Find the best linear join tree for the query
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Dynamic Programming

❚ For each subquery Q �{R1, …, Rn} 
compute the following:
❙ Size(Q)
❙ A best plan for Q: Plan(Q)
❙ The cost of that plan: Cost(Q)
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Dynamic Programming

❚ Step 1: For each {Ri} do:
❙ Size({Ri}) = B(Ri)
❙ Plan({Ri}) = Ri
❙ Cost({Ri}) = (cost of scanning Ri)
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Dynamic Programming

❚ Step i: For each Q �{R1, …, Rn} of 
cardinality i do:
❙ Compute Size(Q) 
❙ For every pair of subqueries Q’, Q’’ 

s.t. Q = Q’ U Q’’
compute cost(Plan(Q’)       Plan(Q’’))

❙ Cost(Q) = the smallest such cost
❙ Plan(Q) = the corresponding plan
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Dynamic Programming

❚ Return Plan({R1, …, Rn})
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Dynamic Programming

To illustrate, we will make the following 
simplifications:

❚ Cost(P1      P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))

❚ Intermediate results:
❙ If P1 = a join, then the size of the intermediate result 

is size(P1), otherwise the size is 0
❙ Similarly for P2

❚ Cost of a scan = 0
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Dynamic Programming

❚ Example:
❚ Cost(R5     R7)  = 0       (no intermediate results)
❚ Cost((R2     R1)      R7) 

= Cost(R2     R1) + Cost(R7) + size(R2     R1)
= size(R2       R1)
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Dynamic Programming

❚ We used naïve size/cost estimations
❚ In practice:

❙ More realistic size/cost estimations
❙ Heuristics for Reducing the Search Space 

❘ Restrict to left linear trees
❘ Restrict to trees “without cartesian product”

❙ Need more than just one plan for each subquery:
❘ “interesting orders”


