
1

Introduction to Database
Systems

CSE 444

Lecture #16
March 5, 2001

Query Optimization

Required Reading: 7.2, 7.4, 7.5, 7.6

3

Query Optimization:
Phases

❚ Parsing phase
❙ Produces a parse tree

❚ Query-Rewrite phase
❙ Produces a logical tree

❚ Physical Query plan generation
❙ Produces executable (physical) plan

4

Query Optimization

❚ Algebraic laws provide alternative
execution plans

❚ Estimate costs of alternative modes of
execution

❚ Efficiently search the space of alternatives
❙ Simplify search by applying heuristics

(without costing)
❘ apply laws that seem to result in cheaper plans

5

Converting from SQL to
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C

Πa1,…,an(σ C(R1 R2 … Rk))✞ ✜ ✞ ✜ ✞ ✜

6

Converting from SQL to
Logical Plans

Select a1, …, an
From R1, …, Rk
Where C
Group by b1, …, bl

Πa1,…,an(γ b1, …, bm, aggs (σ C(R1 R2 …..
Rk)))

✞ ✜ ✞ ✜

✞ ✜

2

7

Algebraic Laws

❚ Commutative and Associative Laws
❙ R U S = S U R, R U (S U T) = (R U S) U T
❙ R ∩ S = S ∩ R, R ∩ (S ∩ T) = (R ∩ S) ∩ T
❙ R S = S R, R (S T) = (R S)

T

❚ Distributive Laws
❙ R (S U T) = (R S) U (R T)

✞ ✜ ✞ ✜ ✞ ✜ ✞ ✜
✞ ✜

✞ ✜

✞ ✜ ✞ ✜ ✞ ✜

8

Algebraic Laws: Selection

❚ Laws involving selection:
❙ σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
❙ σ C OR C’(R) = σ C(R) U σ C’(R)
❙ σ C (R S) = σ C (R) S

❘ When C involves only attributes of R

❙ σ C (R – S) = σ C (R) – S
❙ σ C (R U S) = σ C (R) U σ C (S)
❙ σ C (R ∩ S) = σ C (R) ∩ S

✞ ✜ ✞ ✜

9

Algebraic Laws: Selection

❚ Example: R(A, B, C, D), S(E, F, G)
❙ σ F=3 (R S) = ?
❙ σ A=5 AND G=9 (R S) = ?

✞ ✜
D=E

✞ ✜
D=E

10

Heuristic: Predicate
Pushdown

Product Company

maker=name

σσσσ price>100 AND city=“Seattle”

pname

Product Company

maker=name

price>100

pname

city=“Seattle”

The earlier we process selections, less tuples we need to manipulate
higher up in the tree (but may cause us to lose an important ordering
of the tuples).

11

Algebraic Laws: Projection

❚ Laws involving projections
❙ ΠM(R S) = ΠN(ΠP(R) ΠQ(S))

❘ Where N, P, Q are appropriate subsets of
attributes of M

❙ ΠM(ΠN(R)) = ΠM,N(R)

❚ Example R(A,B,C,D), S(E, F, G)
❙ ΠA,B,G(R S) = Π ? (Π?(R) Π?(S))

✞ ✜ ✞ ✜

✞ ✜ ✞ ✜
D=E D=E

12

Other Algebraic Laws

❚ Duplicate Elimination
❙ δ(R S) = δ(R) δ(S), …

❚ Grouping
❙ δ(γL(R)) = γLL(R), …
❙ Many transformations depend on aggregate

❘ MAX, SUM etc.

✞ ✜ ✞ ✜

3

13

Cost Estimation

❚ For a given logical plan, there may be
many possible physical plans

❚ We want to choose physical plan with
lowest execution cost

❚ Goal: For a given physical plan, estimate
cost without executing the query

14

Cost Estimation

❚ Ideally should be…
❙ Accurate
❙ Easy to compute
❙ Consistent

❘ E.g. cardinality should not depend on join order

❚ Reality …
❙ ?

15

Estimating Size of Selection

❚ How to estimate size of S = σ A=20(R) ?
❚ Approach 1: Guess!

❙ Surprisingly popular method e.g. T(R)/10
❚ Approach 2: Use statistics

❙ T(S) = T(R)/V(R,A)
Where V(R,A) = number of distinct values of A in R

❚ How about S = σ A≤ 20(R) ?
❙ Guess: T(R)/3
❙ Statistics: Use histogram if available (more later)

16

Estimating Size of Projection

❚ Projection does not change number of
tuples

❚ Size estimate depends on length of
columns

❚ Example: R(a,b,c): a, b are integers, c
string of 100 bytes. Tuple header = 12
bytes, Block size = 1024

❚ πa,b,c(R) = ? πa,b(R) = ?
❚ What if c is variable length string?

17

Estimating Size of Join

❚ R(a,b), S(b,c), estimate T(R S)
❚ Problem: Don’t know how values of R.b and

S.b are related
❙ May be disjoint sets of values => T (R S) = 0
❙ S.b may be key of S and R.b may be foreign

key => T(R S) = T(R)
❚ Estimate for T(R S)

❙ T(R)T(S)/max(V(R,b), V(S,b))

✞ ✜

✞ ✜

✞ ✜

✞ ✜

18

Estimating Size of Join

❚ Example: T(R)=1000, T(S)=2000, V(R,b)
= 20, V(S,b) = 50

❚ T(R S) = ?✞ ✜

4

19

Estimating Size of Join

❚ What happens if query has multiple join
attributes?
❙ Example: R(a,b,c), S(b,c,d)
❙ Estimate = ?

❚ What happens if query has joins of many
relations?
❙ Example: R(a,b), S(b,c), U(b,e)
❙ Estimate = ?

20

Estimating Size of Other
Operators

❚ Union (R,S)
❙ Bag Union: T(R) + T(S)
❙ Set Union: Max(T(R),T(S)) + Min(T(R),T(S))/2

❚ Intersection (R,S)
❙ Min(T(R),T(S))/2

❚ Difference (R,S)
❙ T(R) - T(S)/2

❚ Duplicate Elimination

21

Cost Based Plan Selection

❚ Estimates for size parameters
❙ Use statistics, e.g. histograms

❚ Enumerating physical plans

22

Histograms

❚ Popular in commercial DBMSs
❚ Can give much more accurate cost

estimates
❚ Many types of histograms

❙ Equal-width
❙ Equal-depth
❙ Frequent values
❙ …

23

Equal-width Histogram

❚ Each bucket in histogram has same width
❚ Example: Values = {2,5,23,25,29,31}

❘ Range Count
❘ 1-10 2
❘ 11-20 0
❘ 21-30 3
❘ 31-40 1

❚ T(σ A≤20(R)) = 2

24

Equi-depth Histogram

❚ Each bucket in histogram has same
number of values

❚ Example: {2,5,33,35,39,41}
❘ Bucket Boundary
❘ 5
❘ 35
❘ 41

5

25

Frequent Values

❚ Keep exact counts of frequent values
❚ Total count of all other (non-frequent)

values
❚ Example: Values = {1,3,4,4,4,4,4,9}
❚ Histogram: 4: 5, Others: 3

26

Using Histogram for Size
Estimation

❚ Example: R(a,b) S(b,c).
❚ Histograms:

❙ R.b: 1:200, 0:150, 5:100, Others:550
❙ S.b: 0:100, 1:80, 2:70, Others:250

❚ Size of join = ?

✞ ✜

27

Creating and Maintaining
Statistics in a DBMS

❚ For large tables, creating/refreshing
statistics can be expensive

❚ Alternatives:
❙ Refresh statistics only after many changes to

data
❙ Incremental updating
❙ Sampling – need to be careful…

28

Enumerating Physical Plans

❚ Exhaustive – Consider all possible:
❙ Join Orders
❙ Algorithms for each operator

❚ Heuristic Search
❙ E.g. Greedy approach
❙ Pick next relation such that join size is

smallest

29

Enumerating Physical
Plans

❚ Branch-and-Bound Enumeration
❙ Find a good starting plan (having cost C)
❙ In subsequent search, eliminate any subquery

with cost > C

❚ Hill Climbing
❙ Start with heuristically selected plan
❙ Explore plans in the “neighborhood”

❘ E.g. replace Nested-Loops join with Hash-Join

30

Enumerating Physical
Plans

❚ Dynamic Programming
❙ Bottom-up strategy
❙ For each subexpression, only keep plan with

the least cost
❙ Consider possible implementations of each

node assuming
❙ Extension: also consider interesting orders

❘ E.g., when subexpression is sorted on a sort
attribute at the node

❙ More later

6

31

Determining Join Order

❚ Select-project-join
❚ Push selections down, pull projections up
❚ Hence: we need to choose the join order
❚ This is the main focus of an optimizer

32

Determining Join Order:
Join Trees

❚ R1 R2 …. Rn
❚ Join tree:

❚ A join tree represents a plan. An optimizer
needs to inspect many (all ?) join trees

R3 R1 R2 R4

33

Linear Join Trees

❚ Left deep:

R3 R1

R5

R2

R4

34

Bushy Join Trees

R3

R1

R2 R4

R5

35

Join Ordering Problem

❚ Given: a query R1 R2 … Rn
❚ Assume we have a function cost() that

gives us the cost of every join tree
❚ Find the best linear join tree for the query

36

Dynamic Programming

❚ For each subquery Q �{R1, …, Rn}
compute the following:
❙ Size(Q)
❙ A best plan for Q: Plan(Q)
❙ The cost of that plan: Cost(Q)

7

37

Dynamic Programming

❚ Step 1: For each {Ri} do:
❙ Size({Ri}) = B(Ri)
❙ Plan({Ri}) = Ri
❙ Cost({Ri}) = (cost of scanning Ri)

38

Dynamic Programming

❚ Step i: For each Q �{R1, …, Rn} of
cardinality i do:
❙ Compute Size(Q)
❙ For every pair of subqueries Q’, Q’’

s.t. Q = Q’ U Q’’
compute cost(Plan(Q’) Plan(Q’’))

❙ Cost(Q) = the smallest such cost
❙ Plan(Q) = the corresponding plan

39

Dynamic Programming

❚ Return Plan({R1, …, Rn})

40

Dynamic Programming

To illustrate, we will make the following
simplifications:

❚ Cost(P1 P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))

❚ Intermediate results:
❙ If P1 = a join, then the size of the intermediate result

is size(P1), otherwise the size is 0
❙ Similarly for P2

❚ Cost of a scan = 0

41

Dynamic Programming

❚ Example:
❚ Cost(R5 R7) = 0 (no intermediate results)
❚ Cost((R2 R1) R7)

= Cost(R2 R1) + Cost(R7) + size(R2 R1)
= size(R2 R1)

42

Dynamic Programming

❚ We used naïve size/cost estimations
❚ In practice:

❙ More realistic size/cost estimations
❙ Heuristics for Reducing the Search Space

❘ Restrict to left linear trees
❘ Restrict to trees “without cartesian product”

❙ Need more than just one plan for each subquery:
❘ “interesting orders”

