
1

Introduction to Database
Systems

CSE 444

Lecture #4
Jan 17 2001

2

Announcements – I

Special Lecture
At Sieg 134 on Friday January 19th
from 330-450PM
Topic: Building SQL Applications
Important For
⌧Programming Assignment
⌧Course Project

3

Announcement II

Homework Due Today
Programming Assignment available

Due in a week
Goal
⌧More experience in SQL
⌧Building applications using SQL
⌧Incentive to build front-end

Mid Term
In Class
All material except Transactions

4

SQL (Contd.)

Reading:

Sec 5 (except 5.10)

Sec 7 (except 7.2 – to be covered later)

5

Views

A view is just a relation, but we store a
definition (query), rather than a set of
tuples.

⌧Can rename columns

CREATE VIEW YoungActiveStudents (Yname, Ygrade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

Views can be dropped using the DROP VIEW command.

6

Uses for Views

Views can be used to present necessary
information (or a summary), while
hiding details in underlying relation(s)
(security).
Views also useful for maintaining logical
data independence when the
conceptual schema changes.
May be used to precompute results

2

7

Views vs. Relations

Logical distinctions:
Updates not always possible to a view
View updates must be unambiguously mappable
to base relation updates in order to be allowed

Physical distinctions:
Relations must be physically stored somewhere
Views are logical entities

8

Is it possible to rewrite
using Views?

SELECT Product.Company
FROM Product
WHERE Product.company = “Bazzar”

AND Product.name IN
(SELECT product
FROM Purchase
WHERE buyer = “Joe Blow”);

Find companies who manufacture products bought by Joe Blow.

9

Is it possible to rewrite
using Views?

SELECT name
FROM Product
WHERE price > ALL (SELECT price

FROM Purchase
WHERE maker=“Gizmo-Works”)

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

10

Is it possible to rewrite
using Views?

Product (pname, price, category, maker, year)

Find products (and their manufacturers) that are
more expensive than all products made by the
same manufacturer before 1972

SELECT pname, maker
FROM Product AS x
WHERE price > ALL (SELECT price

FROM Product AS y
WHERE x.maker = y.maker AND

y.year < 1972);

11

Null Values

If x=Null then 4*(3-x)/7 is still NULL

If x=Null then x=“Joe” is UNKNOWN
Three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

12

Null Values

C1 AND C2 = min(C1, C2)
C1 OR C2 = max(C1, C2)
NOT C1 = 1 – C1

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

Rule in SQL: include only tuples that yield TRUE

3

13

Null Values

Unexpected behavior:

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

Some Persons are not included !

14

Null Values

Can test for NULL explicitly:
x IS NULL
x IS NOT NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

OR age IS NULL

Now it includes all Persons

15

Notation for Join in SQL92

Explicit joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

Same as:
SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

But Products that never sold will be lost !
16

Outerjoin

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

17

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

-OneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

Example of Outerjoin

18

Modifying the Database

Insert a new purchase to the database:

INSERT INTO Purchase(buyer, seller, product_name, store)
VALUES (“Joe”, “Fred”, “gizmo”, “GizmoStore”)

4

19

Insertion Exploiting Query

INSERT INTO PRODUCT (product_name, store)
SELECT DISTINCT product_name, store
FROM Purchase
WHERE product NOT IN

(SELECT name
FROM Product)

Schema: Purchase(buyer, seller, product_name, store)
Product (product_name, store)

Note the order of querying and inserting.
20

Deletion

DELETE FROM PURCHASE
WHERE seller = “Joe” AND

product = “Brooklyn Bridge”

Factoid about SQL: there is no way to delete only a single
occurrence of a tuple that appears twice in a relation.

21

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Sales
WHERE Date = today);

22

Updating Views

Need to be able to update base relations such
that result of view reflects update
Formal Definition of “updateable” views is
complex
Example of “updateable” views

Simple selection OK
Use of DISTINCT not allowed
Self-referential selection condition not allowed

23

Updating Complex Views

How can I insert a tuple into a table that doesn’t exist?

CREATE VIEW bon-purchase AS
SELECT store, seller, product
FROM Purchase
WHERE store = “The Bon Marche”

If we make the following insertion:

INSERT INTO bon-purchase
VALUES (“the Bon Marche”, Joe, “Denby Mug”)

We can simply add a tuple
(“the Bon Marche”, Joe, NULL, “Denby Mug”)

to relation Purchase. 24

Example of Non-Updatable
Views

CREATE VIEW Seattle-view AS

SELECT seller, product, store
FROM Person, Purchase
WHERE Person.city = “Seattle” AND

Person.name = Purchase.buyer

How can we add the following tuple to the view above?
Think about null semantics..

(Joe, “Shoe Model 12345”, “Nine West”)

5

25

Using SQL in Applications

26

Using SQL in Applications
Business logic involves

Multiple SQL queries
Application code in a development
language (Java, C++, Visual Basic)
Code may need to be executed
⌧At Client/Middle-Tier
⌧At server

27

Using SQL in Applications
(2)

Data Type issues (Mapping of Types)
Reconcile Explicit iteration in
Programming Language with set-oriented
processing in SQL (Cursors)
SQL generated on-the-fly (Dynamic SQL)
Connectivity of client code to database
server

28

Mapping Types

char=> character (length, char set)
varchar=> character varying (length, char
set)
short=> smallint
Long=> integer
Float=> real
Double= double precision

29

Getting Data Out

Application languages deals with a row at
a time

Not set of rows

How to consume result of a SQL query?
SQL supports cursors

Like a pointer that traverses a collection of
rows one at a time

30

Cursors

1. Declare the cursor
2. Open the cursor
3. Fetch rows one by one
4. Update/Delete “current” tuples
5. Close the cursor

6

31

Declare - Example

Declare cursor1 cursor for
Select current_sales_price, our_cost
From movie_titles
Where current_sales_price > :minprice
Order By current-Sales_price

32

Open/Fetch/Close

Open cursor_name

Fetch [Next| Prior| First | Last | Absolute
<k> | Relative <k>] cursor_name into
:struct1

Close cursor_name

33

Update/Delete

Delete from table_name
where current of cursor_name

Update table_name Set set_list
where current of cursor_name

Update movie_titles Set our_cost = our_cost/2
where current of cursor1

34

Revisiting Declare

DECLARE cursor-name
[INSENSTIVE] [SCROLL] CURSOR FOR
Query_expression
ORDER BY sort_expression
updatability

35

Declare (Contd)

Updatability
Read Only – no update/delete on cursor
allowed
Update restricted to specific fields
⌧For Update of column_name [, column_name]
⌧Declare cursor1 cursor for

Select current_sales_price, our_cost
From movie_titles
For update of current_sales_price

36

Declare (Contd)

Insensitive
Cursor fetches all movies with cost > x
Fetch n records
Reduce cost of all movies by 20%
What records do you see next?
⌧Same as above

Indeterminant

7

37

Declare (Contd)

Scrollable Cursors
Additional syntax in Fetch enabled
Otherwise, only “next” tuple is available
But scroll forces cursor to be read-only!

38

Connectivity - ODBC

Client needs to establish a connection to
server

Generates connection handle - unique
identification

Execute statements
Statement Handle with each – unique
identification

ODBC - Call level interface (CLI) to SQL
stores

39

ODBC Details
SQLDriverConnect -- opens a connection
SQLExecDirect -- executes a sql statement
SQLBindCol -- binds a program variable to a
column in the result of a sql statement
SQLFetch -- fetches the next row in the current
result set
SQLMoreResults -- returns true if more result
sets are yet to be consumed (e.g., useful for a
batch of queries)
SQLError -- returns information about the last
error (for the specified connection)

40

Friday’s (Jan 19)
Special Lecture

More on Connectivity
Building a front-end using ASP
Relevant for

Programming Assignment
Project

Note time and place
Sieg 134
3.30-4.50pm

Please be there!

