Introduction to Database Systems

CSE 444

Lecture \＃8
Jan 292001

Functional Dependencies

Reading：Chapter 3．5，3．6， 3.7

Announcements

\＆Mid Term Syllabus

©Material in lectures
区Textbook
®Chapter 1．1，Chapter 2 （except 2.1 and ODL），
Chapter 3 （except 3．2，3．8），Chapter 4．1，4．5，4．6， Chapter 5 （except 5．10），Chapter 6．1，6．2，7．1， 7.3
囚Mid Term will be in class closed book exam
\＆Key Focus：Schema Design and SQL
®Yes／No；Short answer；Multi－part question
\mathscr{H} Extended Office Hours（this week only）：
©Surajit M，W：4．50－5．50
\triangle Yana Thu 4．30－5．30 and usual hours

Mapping ER Diagram to Relations

HEntity mapped to a relation
HMany－many relationship mapped to a relation
HSome columns will be NULL－able
HMay be possible to combine relations
囚Many－to－one relationships
囚Danger of redundancy：delete／update inconsistencies

Need for Schema
Refinement

HResulting schema may have redundancy
囚Inaccurate E－R modeling
囚Inappropriate combination of relations during mapping
 mathematical tool to detect redundancy
HDecomposition to ensure that schema does not suffer from redundancy

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E1847	John	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	lawyer

A Property of Functional Dependency

Splitting/Combining Lemma

$A_{1}, A_{2}, \ldots A_{n} \longrightarrow B_{1}, B_{2} \ldots B_{m} \quad$ Is equivalent to
$A_{1}, A_{2}, \ldots A_{n} \longrightarrow B_{1}$
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}} \longrightarrow \mathrm{B}_{2}$
$A_{1}, A_{2}, \ldots A_{n} \longrightarrow B_{m}$

Functional Dependencies

Definition:

> If two tuples agree on the attributes
$A_{1}, A_{2}, \ldots A_{n}$
then they must also agree on the attributes $B_{1}, B_{2}, \ldots B_{m}$
Formally: $A_{1}, A_{2}, \ldots A_{n} \longrightarrow B_{1}, B_{2}, \ldots B_{m}$
Motivating example for the study of functional dependencies:

Inference of Implied FD

HImportant for
©Schema Redesign
©Identifying key
HArmstrong's axioms
©Reflexivity If Y subset-of X, then $X->Y$ ©Augmentation $A->B$ implies $A X->B X$
बTransitivity $A->B$ and $B->C$ implies $A->C$
$\mathscr{H} A$ sound and complete inference system to obtain all implied functional dependencies

Example

A	$B \longrightarrow C$
A	D
B	\longrightarrow
A	\longrightarrow
A	

Lets infer a few FD-s...

Closure of a set of Attributes

Given a set of attributes $A=\{A 1, \ldots, A n\}$ and a set of dependencies S.

Closure (A) is the set of all attributes B such that: any relation which satisfies S also satisfies:

A1,...,An -> B

1. Closure(A) is a subset of all FDs implied
2. For a relation $R(A)$ and a key B of $R(A)$:

What is the relationship between closure (B) and A ?

Keys and SuperKeys

Product: name \rightarrow price, manufacturer
Person: \quad ssn \rightarrow name, age
Company: name \rightarrow stock price, president
Key of a relation is a set of attributes that:

- functionally determines all the attributes of the relation
- none of its subsets determines all the attributes.

Superkey: a set of attributes that contains a key

Example

HDrinkers (name, addr, likesbeer, manuf, favbeer)
HWhat are the هKeys?
囚Superkeys?

Closure Algorithm

Start with $X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do:
if $B_{1}, B_{2}, \ldots B_{n} \longrightarrow C$ is in S, and
$B_{1}, B_{2} \ldots B_{n}$ are all in X, and
C is not in X
then
add C to X .

Example

```
\mathscr{AB -> C, C->D, D->A}
\mathscr{AAny "interesting" consequences?}
```


Why Is the Algorithm Correct？

HShow the following by induction： \triangle For every B in X ：
$\boxtimes A 1, \ldots, A n \rightarrow B$
HInitially $X=\{A 1, \ldots, A n\} \quad-$ holds
\mathscr{H} Induction step： $\mathrm{B} 1, \ldots, \mathrm{Bm}$ in X ©Implies $\mathrm{A} 1, \ldots, \mathrm{An} \rightarrow \mathrm{B} 1, \ldots, \mathrm{Bm}$ \triangle We also have $\mathrm{B} 1, \ldots, \mathrm{Bm} \rightarrow \mathrm{C}$ ©By transitivity we have $\mathrm{A} 1, \ldots, \mathrm{An} \rightarrow \mathrm{C}$
\mathscr{H} This shows that the algorithm is sound；need to show it is complete

Relational Schema Design

Main idea：
HStart with initial relational schema
भFind out implied FD－s
\＆Use them to design a better relational schema

Example

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E1847	John	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	lawyer

Example（Contd）

HWhat if：
囚All current salespersons resign
囚Can I update Smith＇s phone？
囚Can I add a salesperson Roy with phone 6923？

Boyce－Codd Normal Form

A relation R is in BCNF if and only if：
Whenever there is a nontrivial dependency
for R ，it is the case that $\left\{A_{1}, A_{2}, \ldots A_{n}\right\} A_{1}, A_{2}, \ldots A_{n} \rightarrow B$
a super－key for R ．

In English（though a bit vague）：
Whenever a set of attributes of R is determining another attribute， should determine all the attributes of R ．

What is interesting about BCNF？

HNo redundancy due to FD－s
\＆No update anomalies
囚Only one（unique）occurrence of a fact is updated
HNo deletion anomalies

Relational Schema Design		
Recall set attributes (persons with several phones):		
Name	SSN	Phone Number
Fred	123-321-99	(201) 555-1234
Fred	123-321-99	(206) 572-4312
Joe	909-438-44	(908) 464-0028
Joe	909-438-44	(212) 555-4000
Problems:		
- redundancy - update anomalies - deletion anomalies	Note	SSN is NOT a key here

Decompositions in General

Let R be a relation with attributes $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}}$
Create two relations $R 1$ and $R 2$ with attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{m}} \quad \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{1}
$$

Such that:
$\quad \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{m}} \quad \cup \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{1}=\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}}$
And
$\quad-\quad R 1$ is the projection of R on $\quad \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{m}}$
$--R 2$ is the projection of R on $\quad \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \mathrm{C}_{1}$

Incorrect Decomposition

When we put it back:
Cannot recover information

Name	Price	Categor \mathbf{y}
Gizmo	19.99	Gadget
OneClick	24.99	Camera
OneClick	29.99	Camera
DoubleClick	24.99	Camera
DoubleClick	29.99	Camera

Example			
Name	SSN	Phone Number	
Fred	123-321-99	(201) 555-1234	
Fred	123-321-99	(206) 572-4312	
Joe	909-438-44	(908) 464-0028	
Joe	909-438-44	(212) 555-4000	
What are the dependencies?			
What are the keys?			
Is it in BCNF?			
			29

Name	Price	Category
Gizmo	\$19.99	
Question:		
Find an example of a 2-attribute relation that is not in BCNF.		

Decomposition Strategy for BCNF

Find a FD that violates the BCNF condition:
$A_{1}, A_{2}, \ldots A_{n} \longrightarrow B_{1}, B_{2}, \ldots B_{m}$

Example

\mathscr{H} Movie (title, year, studio,president, pres_addr)囚Title, year -> studio, studio -> president, president->pres_addr
Hstudio -> president, pres_addr
HDecompose: Studio(studio, president, pres_addr), Movie (title, year, studio)
H Decompose again?

Projecting FD

\mathscr{H} Given F over R , what is the FD that must hold over S, where S is obtained by decomposition?
H्Compute closure (X) for each subset X of S
$\& \mathrm{X}->\mathrm{B}$ holds in S if
$\triangle B$ in S
$\triangle \mathrm{B}$ in closure(X)
$\triangle B$ not in X
\mathscr{H} See Examples 3.39 and 3.40 in text

Decomposition Based on BCNF is Information Preserving

Problem with BCNF

```
&Street, city -> zip, zip -> city
HKeys?
HConsider (Street, city) and (city, zip)
    |How to check street, city -> zip?
&3NF
    \triangleAllow FD if LHS is part of a key (prime)
```


Problems with Decompositions

\mathscr{H} There are three potential problems to consider：
\star Some queries become more expensive．
凹e．g．，find employee and department names
（1）Given instances of the decomposed relations，we may not be able to reconstruct the corresponding instance of the original relation！

囚Checking some dependencies may require joining the instances of the decomposed relations．
区BCNF decomposition example
H Tradeoff：Must consider these issues vs． redundancy．

Summary of Schema Refinement

H If a relation is in BCNF，it is free of redundancies that can be detected using FDs．
H If a relation is not in BCNF，we can try to decompose it into a collection of BCNF relations：
囚Lossless－join，dependency preserving decomposition into BCNF is not always possible
＠Lossless－join decomposition into BCNF is always possible囚Lossless－join，dependency preserving decomposition into 3NF is always possible
QDecompositions should be carried out and／or re－examined while keeping performance requirements in mind．
囚Various decompositions of a single schema are possible．

