Introduction to Database Systems

CSE 444

Lecture #8 Jan 29 2001

Functional Dependencies

Reading: Chapter 3.5, 3.6, 3.7

Mapping ER Diagram to Relations

#Entity mapped to a relation
#Many-many relationship mapped to a relation
#Some columns will be NULL-able
#May be possible to combine relations
Many-to-one relationships
Danger of redundancy: delete/update inconsistencies

Example

Crinker(name, addr) and Favorite(drinker, beer) combined as:
Drinker_info(name, addr, choice_beer)
Can you combine Drinker(name, addr)

and Likes(drinker, beer)?

Need for Schema Refinement

ℜResulting schema may have redundancy
 ☑ Inaccurate E-R modeling
 ☑ Inappropriate combination of relations during mapping

- %Functional Dependency provides a mathematical tool to detect redundancy
- #Decomposition to ensure that schema does not suffer from redundancy

Examp	ole				
	Ð		osition		
		Employees	Ĵ		
Ī	EmpID	Name	Phone	Position	
Ī	E0045	Smith	1234	Clerk	
J	E1847	John	9876	Salesrep	
	E1111	Smith	9876	Salesrep	
	E9999	Mary	1234	lawyer	
_					7

Closure of a set of Attributes

Given a set of attributes $A = \{A1, ..., An\}$ and a set of dependencies S.

Closure(A) is the set of all attributes B such that: any relation which satisfies S also satisfies:

A1, ..., An -> B

1. Closure(A) is a subset of all FDs implied

2. For a relation R(A) and a key B of R(A): What is the relationship between closure (B) and A?

13

15

Example

Crinkers (<u>name</u>, addr, <u>likesbeer</u>, manuf, favbeer)
What are the <a>Keys?

⊡Superkeys?

Closure Algorithm Start with X={A1, ..., An}. Repeat until X doesn't change do: if $B_1, B_2 ... B_n \longrightarrow C$ is in S, and $B_1, B_2 ... B_n$ are all in X, and C is not in X then add C to X.

Example $A \xrightarrow{B} \longrightarrow C$ $A \xrightarrow{D} \xrightarrow{C} E$		
$\begin{array}{ccc} B & \longrightarrow & D \\ A & F & \longrightarrow & B \end{array}$		
Closure of $\{A,B\}$: $X = \{A, B, $	}	
Closure of $\{A, F\}$: $X = \{A, F,$	}	
		17

Example #AB -> C, C->D, D->A #Any "interesting" consequences?

18

Why Is the Algorithm Correct ?

\$\$ Show the following by induction: □For every B in X: □A1, ..., An → B \$\$ Initially X = {A1, ..., An} -- holds \$\$ Induction step: B1, ..., Bm in X □Implies A1, ..., An → B1, ..., Bm □We also have B1, ..., Bm → C □By transitivity we have A1, ..., An →•C \$\$ This shows that the algorithm is *sound*; need to show it is *complete*

Relational Schema Design

Main idea: #Start with initial relational schema #Find out implied FD-s #Use them to design a better relational schema

20

What is interesting about BCNF?

ℜNo redundancy due to FD-s
 ℜNo update anomalies
 Only one (unique) occurrence of a fact is updated
 ℜNo deletion anomalies

4

24

Relationa	l Schem	a Design
Recall set attributes (p	ersons with sever	al phones):
Name	SSN	Phone Number
Fred Fred Joe Joe	123-321-99 123-321-99 909-438-44 909-438-44	(201) 555-1234 (206) 572-4312 (908) 464-0028 (212) 555-4000
Problems: - redundancy - update anomalies - deletion anomalies	Note	: SSN is NOT a key here

Name	SSN	Phone Number	_
Fred	123-321-99	(201) 555-1234	_
Fred	123-321-99	(206) 572-4312	
Joe	909-438-44	(908) 464-0028	
Joe	909-438-44	(212) 555-4000	
What are the depe What are the keys			

nd Now?			and the state of the state
SSN	Name		
123-321-99	Fred		
909-438-44	Joe		
SSN	Phone	Number	
123-321-99	(201)	555-1234	
123-321-99	(206)	572-4312	
909-438-44	(908)	464-0028	
909-438-44	(212)	555-4000	
			3

What Abo	out This?	
Name	Price	Category
Gizmo	\$19.99	gadgets
Question: Find an example o	f a 2-attribute relation	n that is not in BCNF.
		31

Example

33

35

% Decompose: Studio(studio, president, pres_addr), Movie (title, year, studio) % Decompose again? Projecting FD
Given F over R, what is the FD that must hold over S, where S is obtained by decomposition?
Compute closure(X) for each subset X of S
X-> B holds in S if
I B in Closure(X)
I B in closure(X)
I B not in X
See Examples 3.39 and 3.40 in text

Decomposition Based on BCNF is Information Preserving

Attributes A, B, C. FD: $A \rightarrow C$
Relations R1[A,B] R2[A,C]
Tuples in R1: (a,b), (a,b')
Tuples in R2: (a,c), (a,c')
Tuples in the join of R1 and R2: (a,b,c), (a,b,c'), (a,b',c), (a,b',c')
Can (a,b,c') be a bogus tuple? What about (a,b',c') ?

Problems with Decompositions

#There are three potential problems to consider:

- * Some queries become more expensive.
 - ⊠e.g., find employee and department names
- If the original relations of the decomposed relations, we may not be able to reconstruct the corresponding instance of the original relation!
- ☑Checking some dependencies may require joining the instances of the decomposed relations.
 ☑BCNF decomposition example

#Tradeoff: Must consider these issues vs. redundancy.

Summary of Schema Refinement

- #If a relation is in BCNF, it is free of redundancies that can be detected using FDs.
- **#** If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations:
 - $\ensuremath{\boxtimes}\xspace{\ensuremath{\mathsf{Lossless}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{space}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{\mathsf{space}}\xspace{\ensuremath{space}\ensuremath{space}\ensuremath{space}\xspace{\ensuremath{space}}\xspace{\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensuremath{space}\ensu$
 - □Lossless-join decomposition into BCNF *is* always possible □Lossless-join, dependency preserving decomposition into 3NF *is* always possible
 - Decompositions should be carried out and/or re-examined while keeping *performance requirements* in mind.
 - ⊠Various decompositions of a single schema are possible.