
1

1

Lecture 05: SQL
Systems Aspects

Friday, October 11, 2002

2

Outline

• Embedded SQL (8.1)

• Transactions in SQL (8.6)

3

Embedded SQL

• direct SQL (= ad-hoc SQL) is rarely used

• in practice: SQL is embedded in some
application code

• SQL code is identified by special syntax

4

Impedance Mismatch

• Example: SQL in C:
– C uses int, char[..], pointers, etc

– SQL uses tables

• Impedance mismatch = incompatible types

5

The Impedance Mismatch
Problem

Why not use only one language?

• Forgetting SQL: “we can quickly dispense with
this idea” [textbook, pg. 351].

• SQL cannot do everything that the host language
can do.

Solution: use cursors

6

Programs with Embedded SQL

Host language + Embedded SQL

Preprocessor

Host Language + function calls

Host language compiler

Host language program

Preprocessor

Host language compiler

Call-level
interface (CLI):
ODBC,JDBC,

ADO

2

7

Interface: SQL / Host Language

Values get passed through shared variables.

Colons precede shared variables when they occur within the
SQL statements.

EXEC SQL: precedes every SQL statement in the host language.

The variable SQLSTATE provides error messages and status
reports (e.g., “00000” says that the operation completed with no
problem).

EXEC SQL BEGIN DECLARE SECTION;
char productName[30];

EXEC SQL END DECLARE SECTION;

EXEC SQL BEGIN DECLARE SECTION;
char productName[30];

EXEC SQL END DECLARE SECTION;
8

Example

Product (pname, price, quantity, maker)
Purchase (buyer, seller, store, pname)
Company (cname, city)
Person(name, phone, city)

9

Using Shared Variables
Void simpleInsert() {

EXEC SQL BEGIN DECLARE SECTION;
char n[20], c[30]; /* product-name, company-name */
int p, q; /* price, quantity */
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* get values for name, price and company somehow */

EXEC SQL INSERT INTO Product(pname, price, quantity, maker)
VALUES (:n, :p, :q, :c);

}

Void simpleInsert() {

EXEC SQL BEGIN DECLARE SECTION;
char n[20], c[30]; /* product-name, company-name */
int p, q; /* price, quantity */
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

/* get values for name, price and company somehow */

EXEC SQL INSERT INTO Product(pname, price, quantity, maker)
VALUES (:n, :p, :q, :c);

}

10

Single-Row Select Statements

int getPrice(char *name) {

EXEC SQL BEGIN DECLARE SECTION;
char n[20];
int p;
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

strcpy(n, name); /* copy name to local variable */

EXEC SQL SELECT price INTO :p
FROM Product
WHERE Product.name = :n;

return p;
}

int getPrice(char *name) {

EXEC SQL BEGIN DECLARE SECTION;
char n[20];
int p;
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

strcpy(n, name); /* copy name to local variable */

EXEC SQL SELECT price INTO :p
FROM Product
WHERE Product.name = :n;

return p;
}

11

Cursors

1. Declare the cursor

2. Open the cursor

3. Fetch tuples one by one

4. Close the cursor

12

Cursors

void product2XML() {
EXEC SQL BEGIN DECLARE SECTION;

char n[20], c[30];
int p, q;
char SQLSTATE[6];

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE crsCURSOR FOR

SELECT pname, price, quantity, maker

FROM Product;

EXEC SQL OPEN crs;

3

13

Cursors
printf(“<allProducts>\n”);
while (1) {

EXEC SQL FETCH FROM crs INTO :n, :p, :q, :c;
i f (NO_MORE_TUPLES) break;
printf(“ <product>\n”);
printf(“ <name> %s </name>\n” , n);
printf(“ <price> %d </price>\n” , p);
printf(“ <quantity> %d </quantity>\n” , q);
printf(“ <maker> %s </maker>\n” , c);
printf(“ </product>\n”);

}
EXECT SQL CLOSE crs;
printf(“</allProducts>\n”);

} 14

• What is NO_MORE_TUPLES ?

#define NO_MORE_TUPLES !(strcmp(SQLSTATE,”02000”))

15

More on Cursors

• cursors can modify a relation as well as read it.

• We can determine the order in which the cursor will get
tuples by the ORDER BY keyword in the SQL query.

• Cursors can be protected against changes to the
underlying relations.

• The cursor can be a scrolling one: can go forward, backward
+n, -n, Abs(n), Abs(-n).

16

Dynamic SQL

• So far the SQL statements were visible to
the compiler

• In dynamic SQL we have an arbitrary string
that represents a SQL command

• Two steps:
– Prepare: compiles the string

– Execute: executes the compiled string

17

Dynamic SQL

Void someQuery() {
EXEC SQL BEGIN DECLARE SECTION;
char *command=“UPDATE Product SET quantity=quantity+1 WHERE name=“gizmo”
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE myquery FROM :command;

EXEC SQL EXECUTE myquery;

}

myquery = a SQL variable, does not need to be prefixed by “ :” 18

Transactions

Address two issues:

• Access by multiple users
– Remember the “client-server” architecture: one

server with many clients

• Protection against crashes

4

19

Multiple users: single statements

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two managers attempt to do a discount.
Will it work ?

20

Multiple users: multiple
statements

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What’s wrong ?

21

Protection against crashes

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

What’s wrong ?

Crash !

22

Transactions

• Transaction = group of statements that must be
executed atomically

• Transaction properties: ACID
– ATOMICITY = all or nothing

– CONSISTENCY = leave database in consistent state

– ISOLATION = as if it were the only transaction in the
system

– DURABILITY = store on disk !

23

Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

• In “embedded” SQL:
BEGIN TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

24

Transactions: Serializability

Serializability = the technical term for
isolation

• An execution is serial if it is completely
before or completely after any other
function’s execution

• An execution is serializable if it equivalent
to one that is serial

• DBMS can offer serializability guarantees

5

25

Serializability

• Enforced with locks, like in Operating Systems !

• But this is not enough:

LOCK A
[write A=1]
UNLOCK A
. . .
. . .
. . .
. . .
LOCK B
[write B=2]
UNLOCK B

LOCK A
[write A=1]
UNLOCK A
. . .
. . .
. . .
. . .
LOCK B
[write B=2]
UNLOCK B

LOCK A
[write A=3]
UNLOCK A
LOCK B
[write B=4]
UNLOCK B

LOCK A
[write A=3]
UNLOCK A
LOCK B
[write B=4]
UNLOCK B

User 1 User 2

What is wrong ?

time

26

Serializability

• Solution: two-phase locking
– Lock everything at the beginning
– Unlock everything at the end

• Read locks: many simultaneous read locks
allowed

• Write locks: only one write lock allowed
• Insert locks: one per table

27

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions (default):
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

Reading assignment: chapter 8.6

