

 Enrollment(student, major, course, room, time) student → major major, course → room course → time

15

What else can we infer ? [in class]

- Show the following by induction:
 For every B in X:
 A1, ..., An → B
- Initially $X = \{A1, \dots, An\}$ -- holds
- Induction step: *B1*, ..., *Bm* in *X*
 - Implies A1, ..., An →B1, ..., Bm
 - We also have $B1, ..., Bm \rightarrow C$
 - By transitivity we have $A1, ..., An \rightarrow C$
- This shows that the algorithm is *sound*; need to show it is *complete*

19

21

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its FD's
- Use them to design a better relational schema

- Redundancy: data is repeated
- Updated anomalies: need to change in several places
- Delete anomalies: may lose data when we don't want

20

22

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	123-45-6789	206-555-1234	Seattle
Fred	123-45-6789	206-555-6543	Seattle
Joe	987-65-4321	908-555-2121	Westfield
Joe	987-65-4321	908-555-1234	Westfield
I → Name	e, City, but n	ot SSN \rightarrow Pl	noneNumber
$N \rightarrow Name$		ot SSN \rightarrow Pf	noneNumber
	:		oneNumber

• Update anomalies = Fred moves to "Bellvue"

• Deletion anomalies = Fred drops all phone numbers: what is his city ?

So What's the Problem?									
Unit	Com	pany	Unit		Product	_			
Galaga99 Bingo	UW UW		Galaga99 Bingo		databases databases	_			
No problem so far. All <i>local</i> FD's are satisfied. Let's put all the data back into a single table again:									
Unit		Con	npany		Product	_			
Galaga99 Bingo		UW UW			databases latabases	_			
Violates the dependency: company, product -> unit! 38									

Solution: 3rd Normal Form (3NF) A simple condition for removing anomalies from relations: A relation R is in 3rd normal form if:Whenever there is a nontrivial dependency A₁, A₂, ..., A_n \rightarrow B for R, then {A₁, A₂, ..., A_n } a super-key for R, or B is part of a key.