

Outline

- Functional dependencies (3.4)
- Rules about FDs (3.5)
- Design of a Relational schema (3.6)

Functional Dependencies

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:
$\forall t, t^{\prime} \in R,\left(t . A_{1}=t^{\prime} . A_{1} \wedge \ldots \wedge t . A_{m}=t^{\prime} . A_{m} \Rightarrow t \cdot B_{1}=t^{\prime} . B_{1} \wedge \ldots \wedge t . B_{m}=t^{\prime} . B_{m}\right)$

Formal definition of a key

- A key is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute $\mathrm{B}, \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{B}$
- A minimal key is a set of attributes which is a key and for which no subset is a key
- Note: book calls them superkey and key

Examples of Keys

- Product(name, price, category, color)
name, category \rightarrow price
category \rightarrow color
Finding the Keys of a Relation

Keys are: \{name, category\} and all supersets

Finding the Keys

More rules in the book - please read !

Inference Rules for FD's

 (continued)$$
\begin{aligned}
& \mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}} \longrightarrow \mathrm{~A}_{\mathrm{i}} \text { Trivial Rule } \\
& \text { where } \mathrm{i}=1,2, \ldots, \mathrm{n}
\end{aligned}
$$

Why ?

- Enrollment(student, major, course, room, time) student \rightarrow major
major, course \rightarrow room
course \rightarrow time

What else can we infer ? [in class]

Closure of a set of Attributes

Given a set of attributes $\{\boldsymbol{A l}, \ldots, \boldsymbol{A} \boldsymbol{n}\}$ and a set of dependencies S . Problem: find all attributes B such that: any relation which satisfies S also satisfies:
$A 1, \ldots, A n \rightarrow B$

The closure of $\{A 1, \ldots, A n\}$, denoted $\{A 1, \ldots, A n\}^{+}$, is the set of all such attributes B

Closure Algorithm

Start with $X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do:
if $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{n}} \longrightarrow \mathrm{C}$ is in S , and
$B_{i} B_{2} \ldots B_{n}$ are all in X, and
C is not in X

then
add C to X .

Why Is the Algorithm Correct ?

- Show the following by induction:
- For every B in X : - $A l, \ldots, A n \rightarrow B$
- Initially $X=\{A 1, \ldots, A n\}$-- holds
- Induction step: $B 1, \ldots, B m$ in X
- Implies $A 1, \ldots, A n \rightarrow B 1, \ldots, B m$
- We also have $B 1, \ldots, B m \rightarrow C$
- By transitivity we have $A 1, \ldots, A n \longrightarrow C$
- This shows that the algorithm is sound; need to show it is complete

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its FD's
- Use them to design a better relational schema

Relational Schema Design (or Logical Design)

When a database is poorly designed we get anomalies:

- Redundancy: data is repeated
- Updated anomalies: need to change in several places
- Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City, but not SSN \rightarrow PhoneNumber
Anomalies:

- Redundancy
$=$ repeat data
- Update anomalies $=$ Fred moves to "Bellvue"
- Deletion anomalies $=$ Fred drops all phone numbers: what is his city?

Decompositions in General

$R\left(A_{1}, \ldots, A_{n}\right)$

Create two relations $\mathrm{R} 1(\mathrm{~B} 1, \ldots, \mathrm{Bm})$ and $\mathrm{R} 2(\mathrm{C} 1, \ldots, \mathrm{Cp})$
such that: $\mathrm{B} 1, \ldots, \mathrm{Bm} \cup \mathrm{C} 1, \ldots, \mathrm{Cp}=\mathrm{A} 1, \ldots, \mathrm{An}$
and:
$\mathrm{R}_{1}=$ projection of R on $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}$ $\mathrm{R}_{2}=$ projection of R on $\mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

Incorrect Decomposition

- Sometimes it is incorrect:

Name	Price	Category
Gizmo	19.99	Gadget
OneClick	24.99	Camera
DoubleClick	29.99	Camera

Decompose on : Name, Category and Price, Category

Normal Forms

First Normal Form $=$ all attributes are atomic

Second Normal Form (2NF) = old and obsolete

Third Normal Form (3NF) = this lecture

Boyce Codd Normal Form $(B C N F)=$ this lecture

Others...

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:
A relation R is in BCNF if:

Whenever there is a nontrivial dependency $A_{1}, \ldots, A_{n} \rightarrow B$ in R, $\left\{A_{1}, \ldots, A_{n}\right\}$ is a key for R

In English (though a bit vague):
Whenever a set of attributes of R is determining another attribute, should determine all the attributes of R.

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seatlle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

What are the dependencies?
SSN \rightarrow Name, City
What are the keys?
\{Name, SSN, PhoneNumber\}
Is it in BCNF?

Decompose it into BCNF

SSN \rightarrow Name, City

Name	SSN	City
SSN \rightarrow Name, City		
	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN	PhoneNumber
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age
age \rightarrow hairColor
Decompose in BCNF (in class):
Step 1: find all keys

Step 2: now decompose

Correct Decompositions

A decomposition is lossless if we can recover:

R^{\prime} is in general larger than R . Must ensure $\mathrm{R}^{\prime}=\mathrm{R}$

Summary of BCNF
Decomposition
Find a dependency that violates the BCNF condition: $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}} \longrightarrow \mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \mathrm{~B}_{\mathrm{m}}$
Heuristics: choose $B_{1}, B_{2}, \ldots B_{m}$ "as large as possible"

Continue until there are no BCNF violations left.

32

Other Example

- $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}) \quad \mathrm{A} \longrightarrow \mathrm{B}, \quad \mathrm{B} \longrightarrow \mathrm{C}$
- Key: A, D
- Violations of BCNF: $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{A} \rightarrow \mathrm{C}, \mathrm{A} \rightarrow \mathrm{BC}$
- Pick $A \rightarrow B C$: split into R1(A,BC) R2(A,D)
- What happens if we pick $A \rightarrow B$ first ?

Correct Decompositions

- Given $R(A, B, C)$ s.t. $A \rightarrow B$, the decomposition into $\mathrm{R} 1(\mathrm{~A}, \mathrm{~B}), \mathrm{R} 2(\mathrm{~A}, \mathrm{C})$ is lossless

Solution: 3rd Normal Form

 (3NF)A simple condition for removing anomalies from relations:

$$
\begin{aligned}
& \text { A relation } R \text { is in 3rd normal form if: } \\
& \text { Whenever there is a nontrivial dependency } A_{1}, A_{2}, \ldots, A_{n} \rightarrow B \\
& \text { for } R \text {, then }\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \text { a super-key for } R, \\
& \text { or B is part of a key. }
\end{aligned}
$$

