Lecture 29:
Final Review
Wednesday, December 11, 2002

Outline

- From the homework: Mr. Frumble's blues
- An exercise: counting the number of joins
- Redo logging - 17.3
- Redo/undo logging - 17.4
- Course evaluation forms

Counting the Number of Join Orders (Exercise)

$\mathrm{R}_{0}\left(\mathrm{~A}_{0}, \mathrm{~A}_{1}\right) \quad \mathrm{R}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \ldots \mathrm{R}_{\mathrm{n}}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{A}_{\mathrm{n}+1}\right)$

- The number of left linear join trees is: n !
- The number of left linear join trees without cartesian products is:

$$
2^{\mathrm{n}} \quad(\text { why ? })
$$

- The number of bushy join trees is:

$$
n!/(n+1) * C^{2 n_{n}}=(2 n)!/((n+1) *(n!))
$$

- The number of bushy join trees without cartesian product is:
$2^{\mathrm{n}-1}(\mathrm{n}+1) * \mathrm{C}_{\mathrm{n}}^{2 \mathrm{n}} \quad$ (why ?) ${ }^{3}$

The Final

- Date: Friday, December 13
- Time: 8:30-10:20
- Place: this room
- Open book exam !

Number of Subplans Inspected

 by Dynamic Programming$\mathrm{R}_{0}\left(\mathrm{~A}_{0}, \mathrm{~A}_{1}\right) \quad \mathrm{R}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right) \ldots \mathrm{R}_{\mathrm{n}}\left(\mathrm{A}_{\mathrm{n}}, \mathrm{A}_{\mathrm{n}+1}\right)$

- The number of left linear subplans inspected is:
$\Sigma_{\mathrm{k}=1 \mathrm{n}} \mathrm{C}_{\mathrm{k}}^{\mathrm{n}} * \mathrm{k}=\mathrm{n} 2^{\mathrm{n}-1}$
- The number of left linear subplans without cartesian products inspected is:
$\Sigma_{\mathrm{k}=1, \mathrm{n}}(\mathrm{n}-\mathrm{k}+1) * 2=\mathrm{n}(\mathrm{n}+1)$
- The number of bushy join subplans inspected is:
$\Sigma_{\mathrm{k}=1, \mathrm{n}} \mathrm{C}_{\mathrm{k}}^{\mathrm{n}} * 2^{\mathrm{k}}=3^{\mathrm{k}} \quad$ why?
- The number of bushy join subplans without cartesian product:

$$
\Sigma_{\mathrm{k}=1, \mathrm{n}}(\mathrm{n}-\mathrm{k}+1) *(\mathrm{k}-1)=\mathrm{n} * \mathrm{n} *(\mathrm{n}-1) / 2-\mathrm{n}(\mathrm{n}-1)(2 \mathrm{n}-1) / 6=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}+1) / 6
$$

What to Prepare for the Final
Everything!

- Data modeling
- Relational model
- XML
- Relational algebra
- SQL
- Storage
- Indexes
- Physical operators
- Optimization
- Recovery

Data Modeling

- E/R diagrams, ODL
- Keys
- Relationships
- Inheritance
- Mapping to relations

Relational Algebra

- Relations
- Keys
- Functional dependencies
- Decomposition
- Normal forms

XML

- XML syntax
- Select-from-where
- Subqueries
- Aggregation
- Nulls
- Outer joins

SQL

- DTD
- From relations to XML
- From XML to relations

SQL (continued)

- Database modification
- Defining and modifying relation schemas
- Constraints
- On attribute values
- Keys
- Foreign keys
- Embedded SQL

Data Storage

- The I/O model of computation
- Representing data elements:
- Grouping records into blocks
- Variable length records
- Overflow blocks

Index Structures

- Terminology:
- Dense/sparse index
- Primary/secondary index
- B^{+}-trees
- Hash tables

Physical Operators

- One-pass algorithms
- Nested-loop joins
- Two-pass algorithms based on sorting
- Two-pass algorithms based on hash tables
- Index-based algorithms

Optimizations

- Extended logical operators
- Algebraic identities
- Heuristic based optimization:
- Cost based optimization:
- Size estimation
- Dynamic programming for join order

General Advice

- Some problems will require thinking - Use judgment
- Problem difficulty may be uneven:
- do the easy ones first

Grading

- -Homework 25\%
- best 4 out of 5
- -Project: 25\%
- -Midterm: 20\%
- -Final: 25\%
- -Intangibles: 5\%

