CSE 444, Spring 2002

Assignment #5: due Monday, June 3
Objectives:
To understand basic storage techniques, hash tables, query execution and optimization.

Number of points:

100 points

Questions:

1. [25 points] Consider the B+ tree of order d=2 (i.e. each internal node has between 2 and 4 keys) shown below. Show the tree after each of the following operations:

a. Insert the key 70.
b. Insert the key 155.
c. Insert the key 165.
d. Delete the key 10.
e. Delete the key 8.
Your answer should show five B+ trees. Notice: each operation is applied to the tree resulting from the previous operation. That is, your answer in part e. should represent the tree with 70, 155, and 165 inserted and 10 and 8 deleted.

[image: image1.png]s

2. [25 points] Consider the join R⋈R.a=S.bS, given the following information about the relations to be joined. The cost metric is the number of page I/Os unless otherwise noted, and the cost of writing out the result should be uniformly ignored.

· Relation R contains 10000 tuples and has 10 tuples per page.

· Relation S contains 2000 tuples and also has 10 tuples per page.

· Attribute b of relation S is the primary key for S

· Both relations are stored as simple heap files.

· Neither relation has any indexes built on it.

· 52 buffer pages are available.
a. [4 points] What is the cost of joining R and S using a Page-oriented Nested Loops Join?

b. [4 points] What is the cost of joining R and S using a Block Nested Loops Join?

c. [4 points] What is the cost of joining R and S using a Sort-Merge Join?

d. [4 points] What is the cost of joining R and S using a Hash-Join?

e. [5 points] What would be the lowest possible I/O cost for joining R and S using any join algorithm, supposing we have enough buffer space? And how much buffer space would be needed to achieve this cost?

f. [4 points] How many tuples will the join of R and S produce, at most, and how many pages would be required to store the result of the join back on disk? We assume that there is no empty space in the original pages of R and S.

3. [20 points] Consider the following schema:

 Subscriber (ssn, name, city-name)
 City (city-name, route-code, region-id)
 Region (region-id, name, delivery-code, report)

Assume that each Subscriber record is 30 bytes long, each City record is 50 bytes long, and each Region record is 1000 bytes long on average. There are 15,000 tuples in Subscriber, 5000 tuples in City, and 1500 tuples in Region. Page size is 2000 bytes, and there are 20 pages available in the buffer pool. You can assume uniform distribution of values whenever necessary.

 Consider the query:

 SELECT *
 FROM Subscriber S, City C, Region R
 WHERE S.city-name = C.city-name AND C.region-id = R.region-id

a. [10 points] Suggest a query execution plan for this query. Specify which join algorithms you’re using at every point. Estimate the cost of the plan using the formulas given in class.
b. [10 points] The original database does not contain indexes. As a database administrator, choose one and only one index that you think will have most impact on performance, and show a query plan that will utilize this index. Estimate the cost of your proposed plan.

Note that city-name is NOT a key of City. Remember to make explicit any assumptions you are making.

4. [30 points] In SQL Server, when you write a query you can also view the execution plan rather than executing the query. Hit “Ctrl + L”, or press the button
[image: image2.png]

, you will see the execution plan. If you squint just right, it looks like a tree. After you see the plan, you can hover over any of the operators and find out what the estimated I/O costs are, what the estimated CPU costs are, etc. To figure out the total estimated I/O cost, etc, add together the costs for all of the operators. Don't forget to include the Table Scans, etc. If there's nothing given for a select, don't worry about it.

Using this tool, and the database in homework 3, answer the following questions:

a. [7 points] Find a query that the optimizer will pick a hash join for.

(i) What is the query?

(ii) What is the total estimated I/O cost?

(iii) What is the total estimated CPU cost?

(iv) Why does the optimizer use hash-join instead of nested-loop join?

b. [7 points] Find a query that the optimizer will pick a nested-loop join for.

(i) What is the query?

(ii) What is the total estimated I/O cost?

(iii) What is the total estimated CPU cost?

(iv) Why does the optimizer use nested-loop join instead of hash-join?

c. [10 points] For the following query:

SELECT EntryYear, COUNT(LoginID)

FROM GradStudents

WHERE FirstName = 'David'

GROUP BY EntryYear

HAVING EntryYear >= 1995

ORDER BY EntryYear DESC

(i) Does the optimizer apply the selection predicate in HAVING clause before or after grouping (GROUP BY)? Give the reason why the optimizer chooses this order.

(ii) Does the optimizer do sorting (ORDER BY) before or after grouping? Give the reason why the optimizer chooses this order.
d. [6 points] Examine the execution plan for the following query.

SELECT FirstName

FROM Faculty

WHERE FirstName NOT IN (

SELECT FirstName

FROM UndergradStudents

)

To optimize it, the optimizer transforms this query to an equivalent query for execution. What is that new query?

Hint: Refer to the “Argument” contents in the popped up information block.

_1082914841

_1083512320

