CSE 444, Winter 2003

Assignment #4: due Wednesday, March 12
Objectives:
To understand basic storage techniques, hash tables, query execution and optimization.

Number of points:

100 points

Questions:

1. [40 points] Consider the following relational data:

 Purchase (pname, date, buyer, seller)

 Product (name, price, manufacturer, category)
· Relation Purchase contains 10000 tuples and has 50 tuples per page.

· Relation Product contains 3000 tuples and has 10 tuples per page.

· Attribute name is the primary key for Product
· Both relations are stored as simple heap files.

· Neither relation has any indexes built on it.

· 102 buffer pages are available.
Consider the following query:

SELECT name, seller, buyer

FROM Product, Purchase

WHERE Product.name = Purchase.pname

Answer the following questions:
a. [5 points] What is the cost of joining Purchase and Product using a Page-oriented Nested Loops Join?

b. [5 points] What is the cost of joining Purchase and Product using a Block Nested Loops Join?

c. [5 points] What is the cost of joining Purchase and Product using a Sort-Merge Join?

d. [5 points] What is the cost of joining Purchase and Product using a Hash-Join?

e. [10 points] What would be the lowest possible I/O cost for joining Purchase and Product using any join algorithm, supposing we have enough buffer space? And how much buffer space would be needed to achieve this cost?

f. [5 points] Now suppose we have a hash-index on pname of Purchase. The index is non-clustered. The records are NOT stored together with the key values in the index. We need 1.2 I/O to get data entry in index page on average. What’s the cost of joining Purchase and Product using Index Nested Loop Join?
g. [5 points] How many tuples will the join of Purchase and Product produce, at most?

2. [20 points] Consider the following relational schema, that includes two relations:

 Author(pid, name)

 Paper(pid, title, year, citations)

The Paper relation stores a set of published papers, including their publication ID, title, year of publication, and the number of citations by other papers. The Author relation stores for every paper ID, the set of author names (so there is a row in the Author table for every author).

a. [10 points] Consider the following query, that returns for every year, the maximal number of citations for papers published that year, but only if the number of citations is more than 20:

 Select year, Max(citations)

 From Paper

 Group By year

 Having Max(citations) > 20.

Can you propose a transformation on the above query that is likely to reduce the cost of evaluating the query?

b. [10 points] Suppose the query was modified to also return the number of papers published in those years, i.e.,

 Select year, Max(citations), Count(*)

 From Paper

 Group By year

 Having Max(citations) > 20.

 Would the optimization you proposed above still be valid? Why or why not?

3. [40 points] In SQL Server, when you write a query you can also view the execution plan rather than executing the query. Hit “Ctrl + L”, or press the button
[image: image1.png]

, you will see the execution plan. If you squint just right, it looks like a tree. After you see the plan, you can hover over any of the operators and find out what the estimated I/O costs are, what the estimated CPU costs are, etc. To figure out the total estimated I/O cost, etc, add together the costs for all of the operators. Don't forget to include the Table Scans, etc. If there's nothing given for a select, don't worry about it.

Using this tool, and the database in homework 1, answer the following questions:

a. [8 points] Find a query that the optimizer will pick a hash join for.

(i) What is the query?

(ii) What is the total estimated I/O cost?

(iii) What is the total estimated CPU cost?

(iv) Why does the optimizer use hash-join instead of nested-loop join?

b. [8 points] Find a query that the optimizer will pick a nested-loop join for.

(i) What is the query?

(ii) What is the total estimated I/O cost?

(iii) What is the total estimated CPU cost?

(iv) Why does the optimizer use nested-loop join instead of hash-join?

c. [14 points] For the following query:

SELECT university, department, count(*) AS num

FROM Education

GROUP BY university, department

HAVING department != 'Computer Science and Engineering'

ORDER BY university, department DESC

(i) Does the optimizer apply the selection predicate in HAVING clause before or after grouping (GROUP BY)? Give the reason why the optimizer chooses this order.

(ii) Does the optimizer do sorting (ORDER BY) before or after grouping? Give the reason why the optimizer chooses this order.
d. [10 points] Examine the execution plan for the following query.

SELECT inFriend

FROM Ifriend

WHERE inFriend NOT IN (

SELECT outFriend

FROM Ofriend

)

To optimize it, the optimizer transforms this query to an equivalent query for execution. What is that new query?

Hint: Refer to the “Argument” contents in the popped up information block.

_1083512320

