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Lecture 03: SQL

Monday, October 2nd, 2006
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Outline

• Subqueries (6.3)

• Aggregations (6.4.3 – 6.4.6)

• Examples, examples, examples…

Read the entire chapter 6 !
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Aggregation

SELECT count(*)

FROM Product

WHERE year > 1995

SELECT count(*)

FROM Product

WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)

FROM Product

WHERE maker=“Toyota”

SELECT avg(price)

FROM Product

WHERE maker=“Toyota”

SQL supports several aggregation operations:

sum, count, min, max, avg
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COUNT   applies to duplicates, unless otherwise stated:

SELECT Count(category)

FROM Product

WHERE year > 1995

SELECT Count(category)

FROM Product

WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

Aggregation: Count
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Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)

FROM Purchase

SELECT Sum(price * quantity)

FROM Purchase

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

What do

they mean ?
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Simple Aggregations
Purchase

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

50  (= 20+30)
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Grouping and Aggregation
Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.
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Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.
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1&2. FROM-WHERE-GROUPBY

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct
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3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

15Banana

50Bagel

TotalSalesProduct
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GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)

FROM Purchase y

WHERE x.product = y.product 

AND y.date > ‘10/1/2005’)

AS TotalSales

FROM Purchase x

WHERE x.date > ‘10/1/2005’

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)

FROM Purchase y

WHERE x.product = y.product 

AND y.date > ‘10/1/2005’)

AS TotalSales

FROM Purchase x

WHERE x.date > ‘10/1/2005’
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Another Example

SELECT product,

sum(price * quantity) AS SumSales

max(quantity) AS MaxQuantity

FROM Purchase

GROUP BY product

SELECT product,

sum(price * quantity) AS SumSales

max(quantity) AS MaxQuantity

FROM Purchase

GROUP BY product

What does

it mean ?
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HAVING Clause

SELECT product, Sum(price * quantity)

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

HAVING Sum(quantity) > 30

SELECT product, Sum(price * quantity)

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

HAVING Sum(quantity) > 30

Same query, except that we consider only products that had

at least 100 buyers.

HAVING clause contains conditions on aggregates.
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General form of Grouping and 

Aggregation
SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER 
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?
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General form of Grouping and 

Aggregation

Evaluation steps:

1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2



16

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT

2. Quantifiers

3. Aggregation v.s. subqueries

4. Two examples (study at home)
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1. INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

If R, S have no

duplicates, then can

write without

subqueries

(HOW ?)

INTERSECT and EXCEPT: not in SQL Server
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2. Quantifiers

Product ( pname,  price, company)

Company( cname, city)

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy  ! ☺
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2. Quantifiers

Product ( pname,  price, company)

Company( cname, city)

Find all companies s.t. all of their products have price < 100

Universal: hard !  �

Find all companies that make only products with price < 100

same as:
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2. Quantifiers

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product ≥ 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100
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3. Group-by v.s. Nested Query

• Find authors who wrote ≥ 10 documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name

FROM Author

WHERE        count(SELECT Wrote.url

FROM Wrote

WHERE Author.login=Wrote.login)

> 10

SELECT DISTINCT Author.name

FROM Author

WHERE        count(SELECT Wrote.url

FROM Wrote

WHERE Author.login=Wrote.login)

> 10

This is

SQL by

a novice

Author(login,name)

Wrote(login,url)
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3. Group-by v.s. Nested Query

• Find all authors who wrote at least 10 

documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login

GROUP BY Author.name

HAVING count(wrote.url) > 10

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login

GROUP BY Author.name

HAVING count(wrote.url) > 10

This is

SQL  by

an expert

No need for DISTINCT: automatically from GROUP BY
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3. Group-by v.s. Nested Query

Find authors with vocabulary ≥ 10000 words:

SELECT Author.name

FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url

GROUP BY Author.name

HAVING count(distinct Mentions.word) > 10000

SELECT Author.name

FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url

GROUP BY Author.name

HAVING count(distinct Mentions.word) > 10000

Author(login,name)

Wrote(login,url)

Mentions(url,word)
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4. Two Examples

Store(sid, sname)

Product(pid, pname, price, sid)

Find all stores that sell only products with price > 100

same as:

Find all stores s.t. all their products have price > 100)
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SELECT Store.name

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.name

HAVING 100 < min(Product.price)

SELECT Store.name

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.name

HAVING 100 < min(Product.price)

SELECT Store.name

FROM Store

WHERE Store.sid NOT IN

(SELECT Product.sid

FROM Product

WHERE Product.price <= 100)

SELECT Store.name

FROM Store

WHERE Store.sid NOT IN

(SELECT Product.sid

FROM Product

WHERE Product.price <= 100)

SELECT Store.name

FROM Store

WHERE

100 < ALL (SELECT Product.price

FROM product

WHERE Store.sid = Product.sid)

SELECT Store.name

FROM Store

WHERE

100 < ALL (SELECT Product.price

FROM product

WHERE Store.sid = Product.sid)

Almost equivalent…

Why both ?
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Two Examples

Store(sid, sname)

Product(pid, pname, price, sid)

For each store, 

find its most expensive product
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Two Examples

SELECT Store.sname, max(Product.price)

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.sname

SELECT Store.sname, max(Product.price)

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.sname

SELECT Store.sname, x.pname

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >= 

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

SELECT Store.sname, x.pname

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >= 

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

This is easy but doesn’t do what we want:

Better:

But may

return

multiple 

product names

per store
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Two Examples

SELECT Store.sname, max(x.pname)

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >= 

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

GROUP BY Store.sname

SELECT Store.sname, max(x.pname)

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >= 

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

GROUP BY Store.sname

Finally, choose some pid arbitrarily, if there are many

with highest price:


