
1

Lecture 03: SQL

Monday, October 2nd, 2006

2

Outline

• Subqueries (6.3)

• Aggregations (6.4.3 – 6.4.6)

• Examples, examples, examples…

Read the entire chapter 6 !

3

Aggregation

SELECT count(*)

FROM Product

WHERE year > 1995

SELECT count(*)

FROM Product

WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)

FROM Product

WHERE maker=“Toyota”

SELECT avg(price)

FROM Product

WHERE maker=“Toyota”

SQL supports several aggregation operations:

sum, count, min, max, avg

4

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)

FROM Product

WHERE year > 1995

SELECT Count(category)

FROM Product

WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

SELECT Count(DISTINCT category)

FROM Product

WHERE year > 1995

Aggregation: Count

5

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)

FROM Purchase

SELECT Sum(price * quantity)

FROM Purchase

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

What do

they mean ?

6

Simple Aggregations
Purchase

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

SELECT Sum(price * quantity)

FROM Purchase

WHERE product = ‘bagel’

50 (= 20+30)

7

Grouping and Aggregation
Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.

8

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

9

1&2. FROM-WHERE-GROUPBY

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

10

3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

201.5010/25Bagel

10110/10Banana

100.510/3Banana

20110/21Bagel

QuantityPriceDateProduct

15Banana

50Bagel

TotalSalesProduct

11

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)

FROM Purchase y

WHERE x.product = y.product

AND y.date > ‘10/1/2005’)

AS TotalSales

FROM Purchase x

WHERE x.date > ‘10/1/2005’

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)

FROM Purchase y

WHERE x.product = y.product

AND y.date > ‘10/1/2005’)

AS TotalSales

FROM Purchase x

WHERE x.date > ‘10/1/2005’

12

Another Example

SELECT product,

sum(price * quantity) AS SumSales

max(quantity) AS MaxQuantity

FROM Purchase

GROUP BY product

SELECT product,

sum(price * quantity) AS SumSales

max(quantity) AS MaxQuantity

FROM Purchase

GROUP BY product

What does

it mean ?

13

HAVING Clause

SELECT product, Sum(price * quantity)

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

HAVING Sum(quantity) > 30

SELECT product, Sum(price * quantity)

FROM Purchase

WHERE date > ‘10/1/2005’

GROUP BY product

HAVING Sum(quantity) > 30

Same query, except that we consider only products that had

at least 100 buyers.

HAVING clause contains conditions on aggregates.

14

General form of Grouping and

Aggregation
SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?

15

General form of Grouping and

Aggregation

Evaluation steps:

1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)

4. Compute aggregates in S and return the result

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

SELECT S

FROM R1,…,Rn

WHERE C1

GROUP BY a1,…,ak

HAVING C2

16

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT

2. Quantifiers

3. Aggregation v.s. subqueries

4. Two examples (study at home)

17

1. INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

If R, S have no

duplicates, then can

write without

subqueries

(HOW ?)

INTERSECT and EXCEPT: not in SQL Server

18

2. Quantifiers

Product (pname, price, company)

Company(cname, city)

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy ! ☺

19

2. Quantifiers

Product (pname, price, company)

Company(cname, city)

Find all companies s.t. all of their products have price < 100

Universal: hard ! �

Find all companies that make only products with price < 100

same as:

20

2. Quantifiers

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product ≥ 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

21

3. Group-by v.s. Nested Query

• Find authors who wrote ≥ 10 documents:

• Attempt 1: with nested queries

SELECT DISTINCT Author.name

FROM Author

WHERE count(SELECT Wrote.url

FROM Wrote

WHERE Author.login=Wrote.login)

> 10

SELECT DISTINCT Author.name

FROM Author

WHERE count(SELECT Wrote.url

FROM Wrote

WHERE Author.login=Wrote.login)

> 10

This is

SQL by

a novice

Author(login,name)

Wrote(login,url)

22

3. Group-by v.s. Nested Query

• Find all authors who wrote at least 10

documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login

GROUP BY Author.name

HAVING count(wrote.url) > 10

SELECT Author.name

FROM Author, Wrote

WHERE Author.login=Wrote.login

GROUP BY Author.name

HAVING count(wrote.url) > 10

This is

SQL by

an expert

No need for DISTINCT: automatically from GROUP BY

23

3. Group-by v.s. Nested Query

Find authors with vocabulary ≥ 10000 words:

SELECT Author.name

FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url

GROUP BY Author.name

HAVING count(distinct Mentions.word) > 10000

SELECT Author.name

FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url

GROUP BY Author.name

HAVING count(distinct Mentions.word) > 10000

Author(login,name)

Wrote(login,url)

Mentions(url,word)

24

4. Two Examples

Store(sid, sname)

Product(pid, pname, price, sid)

Find all stores that sell only products with price > 100

same as:

Find all stores s.t. all their products have price > 100)

25

SELECT Store.name

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.name

HAVING 100 < min(Product.price)

SELECT Store.name

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.name

HAVING 100 < min(Product.price)

SELECT Store.name

FROM Store

WHERE Store.sid NOT IN

(SELECT Product.sid

FROM Product

WHERE Product.price <= 100)

SELECT Store.name

FROM Store

WHERE Store.sid NOT IN

(SELECT Product.sid

FROM Product

WHERE Product.price <= 100)

SELECT Store.name

FROM Store

WHERE

100 < ALL (SELECT Product.price

FROM product

WHERE Store.sid = Product.sid)

SELECT Store.name

FROM Store

WHERE

100 < ALL (SELECT Product.price

FROM product

WHERE Store.sid = Product.sid)

Almost equivalent…

Why both ?

26

Two Examples

Store(sid, sname)

Product(pid, pname, price, sid)

For each store,

find its most expensive product

27

Two Examples

SELECT Store.sname, max(Product.price)

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.sname

SELECT Store.sname, max(Product.price)

FROM Store, Product

WHERE Store.sid = Product.sid

GROUP BY Store.sid, Store.sname

SELECT Store.sname, x.pname

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >=

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

SELECT Store.sname, x.pname

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >=

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

This is easy but doesn’t do what we want:

Better:

But may

return

multiple

product names

per store

28

Two Examples

SELECT Store.sname, max(x.pname)

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >=

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

GROUP BY Store.sname

SELECT Store.sname, max(x.pname)

FROM Store, Product x

WHERE Store.sid = x.sid and

x.price >=

ALL (SELECT y.price

FROM Product y

WHERE Store.sid = y.sid)

GROUP BY Store.sname

Finally, choose some pid arbitrarily, if there are many

with highest price:

