
1

Lecture 05

Views, Constraints

Friday, October 6, 2006



2

Outline

• Data Definition Language (6.6)

• Views (6.7)

• Constraints (Chapter 7)



3

Defining Views

Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS

SELECT name, project

FROM Employee

WHERE department = “Development”

CREATE VIEW Developers AS

SELECT name, project

FROM Employee

WHERE department = “Development”



4

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

Example
Purchase(customer, product, store)

Product(pname, price)

CustomerPrice(customer, price) “virtual table”



5

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

We can later use the view:

Purchase(customer, product, store)

Product(pname, price)

CustomerPrice(customer, price)



6

What Happens When We Query 

a View ?

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store

FROM CustomerPrice u, Purchase v

WHERE u.customer = v.customer AND

u.price > 100

SELECT x.customer, v.store

FROM Purchase x, Product y, Purchase v, 

WHERE x.customer = v.customer AND

y.price > 100 AND

x.product = y.pname

SELECT x.customer, v.store

FROM Purchase x, Product y, Purchase v, 

WHERE x.customer = v.customer AND

y.price > 100 AND

x.product = y.pname



7

Types of Views

• Virtual views:

– Used in databases

– Computed only on-demand – slow at runtime

– Always up to date

• Materialized views

– Used in data warehouses

– Pre-computed offline – fast at runtime

– May have stale data



8

CREATE VIEW Expensive-Product AS

SELECT pname

FROM Product

WHERE price > 100

CREATE VIEW Expensive-Product AS

SELECT pname

FROM Product

WHERE price > 100

Updating Views: Part 1

INSERT 

INTO Expensive-Product

VALUES(‘Gizmo’)

INSERT 

INTO Expensive-Product

VALUES(‘Gizmo’)

INSERT 

INTO Product 

VALUES(‘Gizmo’, NULL)

INSERT 

INTO Product 

VALUES(‘Gizmo’, NULL)

Purchase(customer, product, store)

Product(pname, price)

Updateable

view



9

CREATE VIEW AcmePurchase AS

SELECT customer, product

FROM Purchase

WHERE store = ‘AcmeStore’

CREATE VIEW AcmePurchase AS

SELECT customer, product

FROM Purchase

WHERE store = ‘AcmeStore’

Updating Views: Part 2

INSERT 

INTO Toy-Product

VALUES(‘Joe’, ‘Gizmo’)

INSERT 

INTO Toy-Product

VALUES(‘Joe’, ‘Gizmo’)

INSERT 

INTO Product 

VALUES(‘Joe’,’Gizmo’,NULL)

INSERT 

INTO Product 

VALUES(‘Joe’,’Gizmo’,NULL)

Note

this

Purchase(customer, product, store)

Product(pname, price)

Updateable

view



10

Updating Views: Part 3

INSERT INTO CustomerPrice

VALUES(‘Joe’, 200)

INSERT INTO CustomerPrice

VALUES(‘Joe’, 200)

? ? ? ? ?? ? ? ? ?

Non-updateable

view
Most views are

non-updateable

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

CREATE VIEW CustomerPrice AS

SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname

Purchase(customer, product, store)

Product(pname, price)



11

Constraints in SQL

• A constraint = a property that we’d like our 

database to hold

• The system will enforce the constraint by 

taking some actions:

– forbid an update

– or perform compensating updates



12

Constraints in SQL

Constraints in SQL:

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

The more complex the constraint, the harder it is to check and 

to enforce

simplest

Most

complex



13

Keys

OR:

CREATE TABLE Product (

name CHAR(30) PRIMARY KEY,

category VARCHAR(20))

CREATE TABLE Product (

name CHAR(30) PRIMARY KEY,

category VARCHAR(20))

CREATE TABLE Product (

name CHAR(30),

category VARCHAR(20)

PRIMARY KEY (name))

CREATE TABLE Product (

name CHAR(30),

category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)



14

Keys with Multiple Attributes

CREATE TABLE Product (

name CHAR(30),

category VARCHAR(20),

price INT,

PRIMARY KEY (name, category))

CREATE TABLE Product (

name CHAR(30),

category VARCHAR(20),

price INT,

PRIMARY KEY (name, category))

40GadgetGizmo

30

20

10

Price

PhotoGizmo

PhotoCamera

GadgetGizmo

CategoryName Product(name, category, price)



15

Other Keys

CREATE TABLE Product (

productID CHAR(10),

name CHAR(30),

category VARCHAR(20),

price INT,

PRIMARY KEY (productID),

UNIQUE (name, category))

CREATE TABLE Product (

productID CHAR(10),

name CHAR(30),

category VARCHAR(20),

price INT,

PRIMARY KEY (productID),

UNIQUE (name, category))

There is at most one PRIMARY KEY;

there can be many UNIQUE



16

Foreign Key Constraints

CREATE TABLE Purchase (

prodName CHAR(30)

REFERENCES Product(name),

date DATETIME)

CREATE TABLE Purchase (

prodName CHAR(30)

REFERENCES Product(name),

date DATETIME)

prodName is a foreign key to Product(name)

name must be a key in Product

Referential

integrity

constraints

May write

just Product

(why ?)



17

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase



18

Foreign Key Constraints

• OR

• (name, category) must be a PRIMARY 
KEY

CREATE TABLE Purchase (

prodName CHAR(30),

category VARCHAR(20),

date DATETIME,

FOREIGN KEY (prodName, category) 

REFERENCES Product(name, category) 

CREATE TABLE Purchase (

prodName CHAR(30),

category VARCHAR(20),

date DATETIME,

FOREIGN KEY (prodName, category) 

REFERENCES Product(name, category) 



19
PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

What happens during updates ?

Types of updates:

• In Purchase: insert/update

• In Product: delete/update



20

What happens during updates ?

• SQL has three policies for maintaining 
referential integrity:

• Reject violating modifications (default)

• Cascade: after a delete/update do a 
delete/update

• Set-null set foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6



21

Constraints on Attributes and 

Tuples

• Constraints on attributes:

NOT NULL -- obvious meaning...

CHECK condition -- any condition !

• Constraints on tuples

CHECK condition



22

CREATE TABLE Purchase (

prodName CHAR(30)

CHECK (prodName IN

SELECT Product.name

FROM Product),

date DATETIME NOT NULL)

CREATE TABLE Purchase (

prodName CHAR(30)

CHECK (prodName IN

SELECT Product.name

FROM Product),

date DATETIME NOT NULL)

What

is the difference from

Foreign-Key ?



23

General Assertions

CREATE ASSERTION myAssert CHECK

NOT EXISTS(

SELECT Product.name

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

GROUP BY Product.name

HAVING count(*) > 200)

CREATE ASSERTION myAssert CHECK

NOT EXISTS(

SELECT Product.name

FROM Product, Purchase

WHERE Product.name = Purchase.prodName

GROUP BY Product.name

HAVING count(*) > 200)



24

Final Comments on Constraints

• Can give them names, and alter later

– Read in the book !!!

• We need to understand exactly when they 

are checked

• We need to understand exactly what actions 

are taken if they fail


