
1

Lecture 13:

Security

Wednesday, October 26, 2006

2

Midterm !

Friday, 10:30-11:20, in class.

• Problem 1: SQL

• Problem 2: E/R diagrams

• Problem 3: Conceptual design, BCNF

Open book examOpen book exam

3

Outline

SQL Security – 8.7

Two famous attacks

Two new trends

4

Discretionary Access Control in

SQL

GRANT privileges

ON object

TO users

[WITH GRANT OPTIONS]

GRANT privileges

ON object

TO users

[WITH GRANT OPTIONS]

privileges = SELECT |

INSERT(column-name) |

UPDATE(column-name) |

DELETE |

REFERENCES(column-name)

object = table | attribute

5

Examples

GRANT INSERT, DELETE ON Customers

TO Yuppy WITH GRANT OPTIONS

GRANT INSERT, DELETE ON Customers

TO Yuppy WITH GRANT OPTIONS

Queries allowed to Yuppy:

Queries denied to Yuppy:

INSERT INTO Customers(cid, name, address)

VALUES(32940, ‘Joe Blow’, ‘Seattle’)

DELETE Customers

WHERE LastPurchaseDate < 1995

INSERT INTO Customers(cid, name, address)

VALUES(32940, ‘Joe Blow’, ‘Seattle’)

DELETE Customers

WHERE LastPurchaseDate < 1995

SELECT Customer.address

FROM Customer

WHERE name = ‘Joe Blow’

SELECT Customer.address

FROM Customer

WHERE name = ‘Joe Blow’

6

Examples

GRANT SELECT ON Customers TO MichaelGRANT SELECT ON Customers TO Michael

Now Michael can SELECT, but not INSERT or DELETE

7

Examples

GRANT SELECT ON Customers

TO Michael WITH GRANT OPTIONS

GRANT SELECT ON Customers

TO Michael WITH GRANT OPTIONS

Michael can say this:

GRANT SELECT ON Customers TO Yuppi

Now Yuppi can SELECT on Customers

8

Examples

GRANT UPDATE (price) ON Product TO LeahGRANT UPDATE (price) ON Product TO Leah

Leah can update, but only Product.price, but not Product.name

9

Examples

GRANT REFERENCES (cid) ON Customer TO BillGRANT REFERENCES (cid) ON Customer TO Bill

Customer(cid, name, address, balance)

Orders(oid, cid, amount) cid= foreign key

Customer(cid, name, address, balance)

Orders(oid, cid, amount) cid= foreign key

Now Bill can INSERT tuples into Orders

Bill has INSERT/UPDATE rights to Orders.

BUT HE CAN’T INSERT ! (why ?)

10

Views and Security

CREATE VIEW PublicCustomers

SELECT Name, Address

FROM Customers

GRANT SELECT ON PublicCustomers TO Fred

CREATE VIEW PublicCustomers

SELECT Name, Address

FROM Customers

GRANT SELECT ON PublicCustomers TO Fred

David says

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

David owns

Customers:

Fred is not

allowed to

see this

11

Views and Security

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

CREATE VIEW BadCreditCustomers

SELECT *

FROM Customers

WHERE Balance < 0

GRANT SELECT ON BadCreditCustomers TO John

CREATE VIEW BadCreditCustomers

SELECT *

FROM Customers

WHERE Balance < 0

GRANT SELECT ON BadCreditCustomers TO John

David says

David owns

Customers: John is

allowed to

see only <0

balances

12

Views and Security

• Each customer should see only her/his record

CREATE VIEW CustomerMary

SELECT * FROM Customers

WHERE name = ‘Mary’

GRANT SELECT

ON CustomerMary TO Mary

CREATE VIEW CustomerMary

SELECT * FROM Customers

WHERE name = ‘Mary’

GRANT SELECT

ON CustomerMary TO Mary

Doesn’t scale.

Need row-level access control !

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

David says

CREATE VIEW CustomerSue

SELECT * FROM Customers

WHERE name = ‘Sue’

GRANT SELECT

ON CustomerSue TO Sue

CREATE VIEW CustomerSue

SELECT * FROM Customers

WHERE name = ‘Sue’

GRANT SELECT

ON CustomerSue TO Sue

. . .

13

Revocation

REVOKE [GRANT OPTION FOR] privileges

ON object FROM users { RESTRICT | CASCADE }

REVOKE [GRANT OPTION FOR] privileges

ON object FROM users { RESTRICT | CASCADE }

Administrator says:

REVOKE SELECT ON Customers FROM David CASCADEREVOKE SELECT ON Customers FROM David CASCADE

John loses SELECT privileges on BadCreditCustomers

14

Revocation

Joe: GRANT [….] TO Art …

Art: GRANT [….] TO Bob …

Bob: GRANT [….] TO Art …

Joe: GRANT [….] TO Cal …

Cal: GRANT [….] TO Bob …

Joe: REVOKE [….] FROM Art CASCADE

Joe: GRANT [….] TO Art …

Art: GRANT [….] TO Bob …

Bob: GRANT [….] TO Art …

Joe: GRANT [….] TO Cal …

Cal: GRANT [….] TO Bob …

Joe: REVOKE [….] FROM Art CASCADE

Same privilege,

same object,

GRANT OPTION

What happens ??

15

Revocation

Admin

Joe Art

Cal Bob

0

1

234

5

Revoke

According to SQL everyone keeps the privilege

16

Summary of SQL Security

Limitations:

• No row level access control

• Table creator owns the data: that’s unfair !

… or spectacular failure:

• Only 30% assign privileges to users/roles

– And then to protect entire tables, not columns

Access control = great success story of the DB community...

17

Summary (cont)

• Most policies in middleware: slow, error prone:

– SAP has 10**4 tables

– GTE over 10**5 attributes

– A brokerage house has 80,000 applications

– A US government entity thinks that it has 350K

• Today the database is not at the center of the policy

administration universe

[Rosenthal&Winslett’2004]

18

Two Famous Attacks

• SQL injection

• Sweeney’s example

19

Search claims by:

SQL Injection
Your health insurance company lets you see the claims online:

Now search through the claims :

Dr. Lee

First login: User:

Password:

fred

SELECT…FROM…WHERE doctor=‘Dr. Lee’ and patientID=‘fred’SELECT…FROM…WHERE doctor=‘Dr. Lee’ and patientID=‘fred’

[Chris Anley, Advanced SQL Injection In SQL]

20

SQL Injection
Now try this:

Search claims by: Dr. Lee’ OR patientID = ‘suciu’; --

Better:

Search claims by: Dr. Lee’ OR 1 = 1; --

…..WHERE doctor=‘Dr. Lee’ OR patientID=‘suciu’; --’ and patientID=‘fred’…..WHERE doctor=‘Dr. Lee’ OR patientID=‘suciu’; --’ and patientID=‘fred’

21

SQL Injection
When you’re done, do this:

Search claims by: Dr. Lee’; DROP TABLE Patients; --

22

SQL Injection

• The DBMS works perfectly. So why is

SQL injection possible so often ?

• Quick answer:

– Poor programming: use stored procedures !

• Deeper answer:

– Move policy implementation from apps to DB

23

Latanya Sweeney’s Finding

• In Massachusetts, the Group Insurance

Commission (GIC) is responsible for

purchasing health insurance for state

employees

• GIC has to publish the data:

GIC(zip, dob, sex, diagnosis, procedure, ...)GIC(zip, dob, sex, diagnosis, procedure, ...)

24

Latanya Sweeney’s Finding

• Sweeney paid $20 and bought the voter

registration list for Cambridge

Massachusetts:

GIC(zip, dob, sex, diagnosis, procedure, ...)

VOTER(name, party, ..., zip, dob, sex)

GIC(zip, dob, sex, diagnosis, procedure, ...)

VOTER(name, party, ..., zip, dob, sex)

25

Latanya Sweeney’s Finding

• William Weld (former governor) lives in

Cambridge, hence is in VOTER

• 6 people in VOTER share his dob

• only 3 of them were man (same sex)

• Weld was the only one in that zip

• Sweeney learned Weld’s medical records !

zip, dob, sex

26

Latanya Sweeney’s Finding

• All systems worked as specified, yet an

important data has leaked

• How do we protect against that ?

Some of today’s research in data security address breaches

that happen even if all systems work correctly

27

Summary on Attacks

SQL injection:

• A correctness problem:

– Security policy implemented poorly in the application

Sweeney’s finding:

• Beyond correctness:

– Leakage occurred when all systems work as specified

28

Two Novel Techniques

• K-anonymity, information leakage

• Row-level access control

29

Hisp22RamosJohn

Afr-am47StoneBeatrice

Cauc36ReyserJohn

Afr-Am34StoneHarry

RaceAgeLastFirst

*20-40R*John

Afr-am30-50Stone*

*20-40R*John

Afr-Am30-50Stone*

RaceAgeLastFirst

Information Leakage:

k-Anonymity
Definition: each tuple is equal to at least k-1 others

Anonymizing: through suppression and generalization

Hard: NP-complete for suppression only

Approximations exists; but work poorly in practice

[Samarati&Sweeney’98, Meyerson&Williams’04]

Fever

Pain

Measels

Flue

Disease

30

Information Leakage:

Query-view Security

V(name,phone)S(name)

Disclosure ?View(s)Secret Query

V1(name,dept)

V2(dept,phone)
S(name,phone)

V(dept)S(name)

V(name)

where dept=‘RD’

S(name)

where dept=‘HR’

TABLE Employee(name, dept, phone)TABLE Employee(name, dept, phone)Have data:

total

big

tiny

none

[Miklau&S’04, Miklau&Dalvi&S’05,Yang&Li’04]

31

Fine-grained Access Control

Control access at the tuple level.

• Policy specification languages

• Implementation

32

Policy Specification Language

CREATE AUTHORIZATION VIEW PatientsForDoctors AS

SELECT Patient.*

FROM Patient, Doctor

WHERE Patient.doctorID = Doctor.ID

and Doctor.login = %currentUser

CREATE AUTHORIZATION VIEW PatientsForDoctors AS

SELECT Patient.*

FROM Patient, Doctor

WHERE Patient.doctorID = Doctor.ID

and Doctor.login = %currentUser

Context

parameters

No standard, but usually based on parameterized views.

33

Implementation

SELECT Patient.name, Patient.age

FROM Patient

WHERE Patient.disease = ‘flu’

SELECT Patient.name, Patient.age

FROM Patient

WHERE Patient.disease = ‘flu’

SELECT Patient.name, Patient.age

FROM Patient, Doctor

WHERE Patient.disease = ‘flu’

and Patient.doctorID = Doctor.ID

and Patient.login = %currentUser

SELECT Patient.name, Patient.age

FROM Patient, Doctor

WHERE Patient.disease = ‘flu’

and Patient.doctorID = Doctor.ID

and Patient.login = %currentUser

e.g. Oracle

34

Two Semantics

• The Truman Model = filter semantics
– transform reality

– ACCEPT all queries

– REWRITE queries

– Sometimes misleading results

• The non-Truman model = deny semantics
– reject queries

– ACCEPT or REJECT queries

– Execute query UNCHANGED

– May define multiple security views for a user

[Rizvi’04]

SELECT count(*)

FROM Patients

WHERE disease=‘flu’

SELECT count(*)

FROM Patients

WHERE disease=‘flu’

35

Summary on Information

Disclosure

• The theoretical research:

– Exciting new connections between databases

and information theory, probability theory,

cryptography

• The applications:

– many years away

[Abadi&Warinschi’05]

36

Summary of Fine Grained Access

Control
• Trend in industry: label-based security

• Killer app: application hosting
– Independent franchises share a single table at

headquarters (e.g., Holiday Inn)

– Application runs under requester’s label, cannot
see other labels

– Headquarters runs Read queries over them

• Oracle’s Virtual Private Database

[Rosenthal&Winslett’2004]

