
1

Lecture 15:

Recovery

Wednesday, November 2nd, 2006

2

Outline

• Undo logging 17.2

• Redo logging 17.3

• Redo/undo 17.4

3

Transaction Management

Two parts:

• Recovery from crashes: ACID

• Concurrency control: ACID

Both operate on the buffer pool

4

Recovery

From which of the events below can a

database actually recover ?

• Wrong data entry

• Disk failure

• Fire / earthquake / bankrupcy / ….

• Systems crashes

5

Recovery

PreventionType of Crash

DATABASE

RECOVERY

System failures:

e.g. power

Buy insurance,

Change jobs…

Fire, theft,

bankruptcy…

Redundancy:

e.g. RAID, archive
Disk crashes

Constraints and

Data cleaning
Wrong data entry

Most

frequent

6

System Failures

• Each transaction has internal state

• When system crashes, internal state is lost

– Don’t know which parts executed and which

didn’t

• Remedy: use a log

– A file that records every single action of the

transaction

7

Transactions

• Assumption: the database is composed of
elements

– Usually 1 element = 1 block

– Can be smaller (=1 record) or larger (=1
relation)

• Assumption: each transaction reads/writes
some elements

8

Primitive Operations of

Transactions
• READ(X,t)

– copy element X to transaction local variable t

• WRITE(X,t)

– copy transaction local variable t to element X

• INPUT(X)

– read element X to memory buffer

• OUTPUT(X)

– write element X to disk

9

Example

START TRANSACTION

READ(A,t);

t := t*2;

WRITE(A,t);

READ(B,t);

t := t*2;

WRITE(B,t)

COMMIT;

START TRANSACTION

READ(A,t);

t := t*2;

WRITE(A,t);

READ(B,t);

t := t*2;

WRITE(B,t)

COMMIT;

Atomicity:

BOTH A and B

are multiplied by 2

10

8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t);

READ(B,t); t := t*2; WRITE(B,t)

READ(A,t); t := t*2; WRITE(A,t);

READ(B,t); t := t*2; WRITE(B,t)

11

8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)

We lose atomicity

12

The Log

• An append-only file containing log records

• Note: multiple transactions run

concurrently, log records are interleaved

• After a system crash, use log to:

– Redo some transaction that didn’t commit

– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo

13

Undo Logging

Log records

• <START T>

– transaction T has begun

• <COMMIT T>

– T has committed

• <ABORT T>

– T has aborted

• <T,X,v>

– T has updated element X, and its old value was v

14

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

15

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !

WHAT DO WE DO ?

16

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !
WHAT DO WE DO ?

17

After Crash

• In the first example:

– We UNDO both changes: A=8, B=8

– The transaction is atomic, since none of its actions has been

executed

• In the second example

– We don’t undo anything

– The transaction is atomic, since both it’s actions have been

executed

18

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>

• Hence: OUTPUTs are done early, before
the transaction commits

19

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

20

Recovery with Undo Log

After system’s crash, run recovery manager

• Idea 1. Decide for each transaction T
whether it is completed or not

– <START T>….<COMMIT T>…. = yes

– <START T>….<ABORT T>……. = yes

– <START T>……………………… = no

• Idea 2. Undo all modifications by
incomplete transactions

21

Recovery with Undo Log

Recovery manager:

• Read log from the end; cases:

<COMMIT T>: mark T as completed

<ABORT T>: mark T as completed

<T,X,v>: if T is not completed

then write X=v to disk

else ignore

<START T>: ignore

22

Recovery with Undo Log
…

…

<T6,X6,v6>

…

…

<START T5>

<START T4>

<T1,X1,v1>

<T5,X5,v5>

<T4,X4,v4>

<COMMIT T5>

<T3,X3,v3>

<T2,X2,v2>

Question1 in class:

Which updates are

undone ?

Question 2 in class:

How far back

do we need to

read in the log ?

crash

23

Recovery with Undo Log

• Note: all undo commands are

idempotent

– If we perform them a second time, no

harm is done

– E.g. if there is a system crash during

recovery, simply restart recovery from

scratch

24

Recovery with Undo Log

When do we stop reading the log ?

• We cannot stop until we reach the

beginning of the log file

• This is impractical

Instead: use checkpointing

25

Checkpointing

Checkpoint the database periodically

• Stop accepting new transactions

• Wait until all current transactions complete

• Flush log to disk

• Write a <CKPT> log record, flush

• Resume transactions

26

Undo Recovery with

Checkpointing
…

…

<T9,X9,v9>

…

…

(all completed)

<CKPT>

<START T2>

<START T3

<START T5>

<START T4>

<T1,X1,v1>

<T5,X5,v5>

<T4,X4,v4>

<COMMIT T5>

<T3,X3,v3>

<T2,X2,v2>

During recovery,

Can stop at first

<CKPT>

transactions T2,T3,T4,T5

other transactions

27

Nonquiescent Checkpointing

• Problem with checkpointing: database

freezes during checkpoint

• Would like to checkpoint while database is

operational

• Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive

Non-quiescent = allowing transactions to be active

28

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions

• Continue normal operation

• When all of T1,…,Tk have completed, write

<END CKPT>

29

Undo Recovery with

Nonquiescent Checkpointing
…

…

…

…

…

…

<START CKPT T4, T5, T6>

…

…

…

…

<END CKPT>

…

…

…

During recovery,

Can stop at first

<CKPT>

T4, T5, T6, plus

later transactions

earlier transactions plus

T4, T5, T5

later transactions

Q: why do we need

<END CKPT> ?

Q: why do we need

<END CKPT> ?

30

Redo Logging

Log records

• <START T> = transaction T has begun

• <COMMIT T> = T has committed

• <ABORT T>= T has aborted

• <T,X,v>= T has updated element X, and its

new value is v

31

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

32

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and

<COMMIT T> must be written to disk

before OUTPUT(X)

• Hence: OUTPUTs are done late

33

1616161616OUTPUT(B)

816161616OUTPUT(A)

<COMMIT T>

<START T>

<T,B,16>

<T,A,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

34

Recovery with Redo Log

After system’s crash, run recovery manager

• Step 1. Decide for each transaction T
whether it is completed or not

– <START T>….<COMMIT T>…. = yes

– <START T>….<ABORT T>……. = yes

– <START T>……………………… = no

• Step 2. Read log from the beginning, redo
all updates of committed transactions

35

Recovery with Redo Log

<START T1>

<T1,X1,v1>

<START T2>

<T2, X2, v2>

<START T3>

<T1,X3,v3>

<COMMIT T2>

<T3,X4,v4>

<T1,X5,v5>

…

…

36

Nonquiescent Checkpointing

• Write a <START CKPT(T1,…,Tk)>

where T1,…,Tk are all active transactions

• Flush to disk all blocks of committed

transactions (dirty blocks), while continuing

normal operation

• When all blocks have been written, write

<END CKPT>

37

Redo Recovery with

Nonquiescent Checkpointing
…

<START T1>

…

<COMMIT T1>

…

<START T4>

…

<START CKPT T4, T5, T6>

…

…

…

…

<END CKPT>

…

…

…

<START CKPT T9, T10>

…

Step 1: look for

The last

<END CKPT>

Step 2: redo

from the

earliest

start of

T4, T5, T6

ignoring

transactions

committed

earlier

All OUTPUTs

of T1 are

known to be on disk

38

Comparison Undo/Redo

• Undo logging:

– OUTPUT must be done early

– If <COMMIT T> is seen, T definitely has written all its data to
disk (hence, don’t need to redo) – inefficient

• Redo logging

– OUTPUT must be done late

– If <COMMIT T> is not seen, T definitely has not written any of its
data to disk (hence there is not dirty data on disk, no need to undo)
– inflexible

• Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

39

Undo/Redo Logging

Log records, only one change

• <T,X,u,v>= T has updated element X, its

old value was u, and its new value is v

40

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must

be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late

relative to <COMMIT T>

41

1616161616OUTPUT(B)

<COMMIT T>

816161616OUTPUT(A)

<START T>

<T,B,8,16>

<T,A,8,16>

Log

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888REAT(A,t)

Disk AMem BMem ATAction

Can OUTPUT whenever we want: before/after COMMIT

42

Recovery with Undo/Redo Log

After system’s crash, run recovery manager

• Redo all committed transaction, top-down

• Undo all uncommitted transactions, bottom-up

43

Recovery with Undo/Redo Log

<START T1>

<T1,X1,v1>

<START T2>

<T2, X2, v2>

<START T3>

<T1,X3,v3>

<COMMIT T2>

<T3,X4,v4>

<T1,X5,v5>

…

…

