Lectures 17 and 18:
Concurrency Control

Monday-Wednesday,
November 6-8, 2006



Outline

Serial and Serializable Schedules (18.1)
Conflict Serializability (18.2)

Locks (18.3)

Multiple lock modes (18.4)

The tree protocol (18.7)

Concurrency control by timestamps 18.8

Concurrency control by validation 18.9



The Problem

e Multiple transactions are running concurrently
T,,T,, ...

e They read/write some common elements
AL A, ...

 How can we prevent unwanted interference ?

The SCHEDULER 1s responsible for that



Three Famous Anomalies

What can go wrong if we didn’t have
concurrency control:

e Dirty reads
e Lost updates

 Inconsistent reads

Many other things may go wrong, but have no names
4



Dirty Reads

T,: WRITE(A)

T,: READ(A)

T,: ABORT



Lost Update

T,: READ(A)

T,: A:=A+5

T,: WRITE(A)

T,: READ(A);

T,: A:=A*1.3

T,: WRITE(A);




Inconsistent Read

T,: A:=20; B :=20;
T,: WRITE(A)

T,: READ(A);
T,: READ(B);

T,: WRITE(B)




Schedules

e Given multiple transactions

* A schedule 1s a sequence of interleaved
actions from all transactions




Example

T1 T2

READ(A,t) READ(A, s)
t:=t+100 S 1= §%*2
WRITE(A,t) WRITE(A,s)
READ(B, t) READ(B,s)
t:=t+100 S ;= §%*2
WRITE(B,t) WRITE(B,s)




A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,t)
READ(A,s)
S 1= §*2
WRITE(A,s)
READ(B,s)
S 1= §*2

WRITE(B.s)

10



Serializable Schedule

e A schedule 1s serializable if 1t 1s equivalent
to a serial schedule

11



A Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S 1= 8*2
WRITE(A,s)

READ(B, t)

t:=t+100

WRITE(B,t)
READ(B,s)
S 1= §*2
WRITE(B,s)

Notice: this 1s NOT a serial schedule

12



A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
S 1= 8*2
WRITE(A,s)
READ(B,s)
S 1= 8*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

13



Ignoring Details

e Sometimes transactions’ actions may
commute accidentally because of specific
updates

— Seralizability 1s undecidable !

e The scheduler shouldn’t look at the
transactions’ details

e Assume worst case updates, only care about
reads r(A) and writes w(A)

14



Notation

T,:r(A); wi(A); r(B); wi(B)
T,: 1,(A); W,(A); 1,(B); wy(B)




Contlict Serializability

Contlicts:

Two actions by same transaction T::

Two writes by T;, T, to same element

Read/write by T;, T, to same element

r;(X); wi(Y)

Wi(X); Wi(X)

wi(X); 1;(X)
r;(X); wi(X)

11




Contlict Serializability

e A schedule 1s conflict serializable 1f 1t can
be transformed into a serial schedule by a
series of swappings of adjacent non-
conflicting actions

Example:

r,(A); wi(A); 1,(A); wy(A); r,;(B); w(B); r,(B); w,(B)

1N

r,(A); w,(A); r;(B); w;(B); 1,(A); w,(A); 1,(B); w,(B)




Contlict Serializability

e Any conflict serializable schedule 1s also a
serializable schedule (why ?)

e The converse 1s not true, even under the/ Lost
“worst case update” assumption write
WI(Y); Wz(Y); W,(X); W1(X); W3(X)§ I

U

Equivalent,
but can’t swap W (Y); Wi(X); Wo(Y); Wy(X); W3(X); I




The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
* Build a graph of all transactions T,

 Edge from T, to T, if T; makes an action that
conflicts with one of Tj and comes first

e The test: if the graph has no cycles, then it
1s conflict serializable !

19



Example 1

1,(A); 1,(B); w,(A); 13(A); w(B); w5(A); 1,(B); w,(B)

This schedule i1s conflict-serializable

20



Example 2

1,(A); 1,(B); Wwy(A); 1,(B); r3(A); w(B); wi(A); wy(B)

This schedule 1s NOT conflict-serializable

21



Scheduler

e The scheduler 1s the module that schedules
the transaction’s actions, ensuring
serializability

e How ? Three techniques:

— Locks
— Time stamps
— Validation

22



Locking Scheduler

Simple 1dea:

e Each element has a unique lock

e Each transaction must first acquire the lock
before reading/writing that element

 If the lock 1s taken by another transaction,
then wait

e The transaction must release the lock(s)

23



Notation

1.(A) = transaction T, acquires lock for element A

u.(A) = transaction T, releases lock for element A

24



Example

T1 T2

L,(A); READ(A, t)

t:=t+100

WRITEC(A, t); U,(A); L,(B)
L,(A); READ(A,s)
S 1= §*2
WRITE(A,s); U,(A);
L,(B); DENIED...

READ(B, t)

t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
S 1= §*2
WRITE(B,s); U,(B);

The scheduler has ensured a conflict-serializable schedule  »



Example

T1 T2

L,(A); READ(A, t)

t:=t+100

WRITEC(A, t); U,(A);
L,(A); READ(A,s)
S 1= §*2
WRITE(A,s); U,(A);
L,(B); READ(B,s)
S 1= §*2
WRITE(B,s); U,(B);

L,(B); READ(B, t)

t:=t+100

WRITE(B,t); U,(B);

Locks did not enforce conflict-serializability !!!

26



Two Phase Locking (2PL)

The 2PL rule:

e In every transaction, all lock requests must
preceed all unlock requests

e This ensures contlict serializability !
(Why?)

27



T1

Example: 2PL transactcions

L,(A); L,(B); READ(A, 1)
t:=t+100
WRITE(A, t); U,(A)

READ(B, t)
t:=t+100
WRITE(B,t); U,(B);

Now it 1s conflict-serializable

L,(A); READ(A,s)
S 1= §*2
WRITE(A,s);
L,(B); DENIED...

...GRANTED; READ(B,s)
S = §*?2
WRITE(B,s); U,(A); Uy(B);

28



Deadlock

* Trasaction T, waits for a lock held by T5;
* But T, waits for a lock held by Tj;
* While T; waits for . . ..

e ...and T.; waits for a lock held by T, !!

Could be avoided, by ordering all elements (see
book); or deadlock detection plus rollback

29



I.ock Modes

S = Shared lock (for READ)
X = exclusive lock (for WRITE)

U = update lock
— Initially like S
— Later may be upgraded to X

I = increment lock (for A := A + something)

— Increment operations commute

READ CHAPTER 18.4 |

30



The Locking Scheduler

Taks 1:
add lock/unlock requests to transactions

 Examine all READ(A) or WRITE(A)
actions

e Add appropriate lock requests
* Ensure 2PL !

31



The Locking Scheduler

Task 2:
execute the locks accordingly

e Lock table: a big, critical data structure in a DBMS !
 When a lock 1s requested, check the lock table

— Qrant, or add the transaction to the element’s wait list

* When a lock 1s released, re-activate a transaction from its
wait list

e When a transaction aborts, release all 1ts locks
e Check for deadlocks occasionally

32



The Tree Protocol

 An alternative to 2PL, for tree structures

e E.g. B-trees (the indexes of choice in
databases)

33



The Tree Protocol

Rules:
e The first lock may be any node of the tree

e Subsequently, a lock on a node A may only be
acquired 1f the transaction holds a lock on its
parent B

* Nodes can be unlocked 1n any order (no 2PL
necessary)

The tree protocol 1s NOT 2PL, yet ensures conflict-
serializability !

34



Timestamps

Every transaction receives a unique timestamp
TS(T)

Could be:

e The system’s clock

e A unique counter, incremented by the
scheduler

35



Timestaps

Main 1invariant:

The timestamp order defines
the searialization order of the transaction

36



Timestamps

Associate to each element X:

e RT(X) = the highest timestamp of any
transaction that read X

e WT(X) = the highest timestamp of any
transaction that wrote X

 C(X) = the commit bit: says 1f the
transaction with highest timestamp that
wrote X commited

These are associated to each page X in the buffer pool 37



Main Idea

For any two contlicting actions, ensure that
their order 1s the serialized order:

In each of these cas
e wi(X) ... 1:(X) aet

Write too
* 1y(X) ... wnX) late ?
* Wy(X) . w(X) No problem
Check that TS(U) < TS(T) (WHY 2?)
When T wants to read X, r{(X), how do we
know U, and TS(U) ? 38




Details

Read too late:
T wants to read X, and TS(T) < WT(X)

START(T) ... START(U) ... wy,(X) . . . t(X)

Need to rollback T !

39



Details

Write too late:

T wants to write X, and
WT(X) < TS(T) < RT(X)

START(T) ... START(U) ... ry(X) . . . w(X)

Need to rollback T !

Why do we check WT(X) < TS(T) 7?7?

40



Details

Write too late, but we can still handle it:

T wants to write X, and
TS(T) < RT(X) but WT(X) > TS(T)

START(T) ... START(V) ... wy(X) . . . wp(X)

Don’t write X at all !
(but see later...)

41



More Problems

Read dirty data:
T wants to read X, and WT(X) < TS(T)
e Seems OK, but...

START(U) ... START(T) ... wy(X). . . |.. ABORT(U)

If C(X)=1, then T needs to wait for 1t to become 0

42



More Problems

Write dirty data:
e T wants to write X, and WT(X) > TS(T)

e Seems OK not to write at all, but ...

START(T) ... START(U)... w,(X). . . .. ABORT(U)

It C(X)=1, then T needs to wait for it to become 0



Timestamp-based Scheduling

When a transaction T requests r(X) or w(X),
the scheduler examines RT(X), WT(X),
C(X), and decides one of:

e To grant the request, or

 Torollback T (and restart with later
timestamp)

e Todelay T until C(X) =0

44



Timestamp-based Scheduling

RULES:

e There are 4 long rules 1n the textbook, on
page 974

* You should be able to understand them, or
even derive them yourself, based on the
previous slides

 Make sure you understand them !

READING ASSIGNMENT: 18.8.4 I

45



Multiversion Timestamp

 When transaction T requests r(X)
but WT(X) > TS(T),
then T must rollback

e Idea: keep multiple versions of X:
X X s Xy - - -

TS(X,) > TS(X,)) > TS(X,,) > . . . |

e Let T read an older version, with appropriate
timestamp

46



Details

When w(X) occurs create a new version, denoted
X, where t = TS(T)

When r(X) occurs, find a version X, such that t <
TS(T) and t 1s the largest such

WT(X,) =tand it never chanes

RD(X,) must also be maintained, to reject certain
writes (why ?)

When can we delete X: if we have a later version
X,; and all active transactions T have TS(T) > tl

47



Tradeotfs

e Jocks:

— Great when there are many conflicts
— Poor when there are few conflicts

e Timestamps

— Poor when there are many conflicts (rollbacks)
— Great when there are few conflicts

e Compromise
— READ ONLY transactions — timestamps
— READ/WRITE transactions — locks

48



Concurrency Control by
Validation

e FEach transaction T defines a read set RS(T) and a write set
WS(T)
e Each transaction proceeds 1n three phases:
— Read all elements in RS(T). Time = START(T)

— Validate (may need to rollback). Time = VAL(T)
— Write all elements in WS(T). Time = FIN(T)

Main 1nvariant: the serialization order 1s VAL(T) I

49



Avoid r(X) - wy(X) Contlicts

START(U) VAL(U) FIN(U)

U: | Read phase | Validate | Write phase

conflicts

T: | Read phase | Validate ?

START(T)

IF RS(T) N WS(U) and FIN(U) > START(T)
(U has validated and U has not finished before T begun)

Then ROLLBACK(T)




Avoid w(X) - w(X) Contlicts

START(U) VAL(U) FIN(U)
U: | Read phase | Validate | Write phase
= conflicts
T: | Read phase | Validate | Write phase ?
START(T)
VAL(T)

IF WS(T) n WS(U) and FIN(U) > VAL(T)
(U has validated and U has not finished before T validates)

Then ROLLBACK(T)




Final comments

e Locks and timestamps: SQL Server, DB2

e Validation: Oracle

(more or less)

52



