Lecture 19:
Data Storage and Indexes

Wednesday, November 15, 2006

Outline

e Representing data elements (12)
e Index structures (13.1, 13.2)
e B-trees (13.3)

Files and Tables

e A disk = a sequence of blocks

e A file = a subsequence of blocks, usually
contiguous

e Need to store tables/records/indexes 1n
files/block

Representing Data Elements

e Relational database elements:

CREATE TABLE Product (

pid INT PRIMARY KEY,

name CHAR(20),

description VARCHAR(200),

maker CHAR(10) REFERENCES Company(name)

e A tuple 1s represented as a record
e The table 1s a sequence of records

Issues

e Represent attributes inside the records

e Represent the records inside the blocs

Record Formats: Fixed Length

pid name descr maker

~—L]1— L2 L3 L4

\ \

Base address (B) Address = B+L1+L2

e Information about field types same for all
records 1n a file; stored 1n system catalogs.

e Finding i’th field requires scan of record.
e Note the importance of schema information!

Record Header

To schema
length
pid name descr maker
headerl
timestamp

Need the header because:
*The schema may change

for a while new+old may coexist
*Records from different relations may coexist

Variable Length Records

. Other header information

header pid name descr maker

~—L]1— L2 ‘ L3 | 1.4

length

Place the fixed fields first: F1

Then the variable length fields: F2, F3, F4
Null values take 2 bytes only

Sometimes they take 0 bytes (when at the end)

Storing Records in Blocks

e Blocks have fixed size (typically 4k — 8k)

BLOCK

R4

R3

R2

R1

Spanning Records Across Blocks

block
header

block
header

R1

R2

%

R2

R3

DI

 When records are very large

e Or even medium size: saves space in blocks

10

BLOB

e Binary large objects
e Supported by modern database systems
* E.g. 1mages, sounds, etc.

e Storage: attempt to cluster blocks together

CLOB = character large objec

e Supports only restricted operations

11

File Types

e Unsorted (heap)

e Sorted (e.g. by pid)

12

Modifications: Insertion

e File is unsorted: add it to the end (easy ©)

e File 1s sorted:
— Is there space in the right block ?
* Yes: we are lucky, store it there

— Is there space 1n a neighboring block ?
e Look 1-2 blocks to the left/right, shift records

— If anything else fails, create overflow block

13

Block, ,

Overflow Blocks

Block,

Block .,

Overflow

e After a while the file starts being dominated

by overtlow blocks: time to reorganize

14

Modifications: Deletions

* Free space in block, shift records

e Maybe be able to eliminate an overtlow
block

e Can never really eliminate the record,
because others may point to it

— Place a tombstone 1nstead (a NULL record)

[How can we point to a record in an RDBMS ?1

15

Modifications: Updates

 If new record is shorter than previous, easy ©

 If 1t 1s longer, need to shift records, create
overtlow blocks

16

Where do we
need them

Pointers in RDBMS ?

Logical pointer to a record consists of:
e Logical block number

e An offset in the block’s header

17

[Note: review what a pointer in C is}

Indexes

* An index on a file speeds up selections on the
search key fields for the index.

— Any subset of the fields of a relation can be the search
key for an index on the relation.

— Search key 1s not the same as key (minimal set of fields
that uniquely i1dentify a record 1n a relation).
e An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value K.

Index Classification

Primary/secondary
— Primary = may reorder data according to index

— Secondary = cannot reorder data

Clustered/unclustered

— Clustered = records close in the index are close in the data

— Unclustered = records close in the index may be far in the data
Dense/sparse

— Dense = every key 1n the data appears in the index

— Sparse = the index contains only some keys

B+ tree / Hash table / ...

19

Primary Index

e File 1s sorted on the index attribute

* Dense index: sequence of (key,pointer) pairs

10
20

10

20

30

[

i

30
40

40

50

60 50

60

70

[/ 1]

80

70
30 20

Primary Index

e Sparse index

" 10

10

30 — 20

70 30

40

90

110 50

130

150 60

70

80

Secondary Indexes

e To index other attributes than primary key

 Always dense (why ?)

10 20

10 30)
20 [

20 — 30
20

20

/

30 10

20

\ 10
30

30

/1N

30

Clustered/Unclustered

* Primary indexes = usually clustered

e Secondary indexes = usually unclustered

23

Clustered vs. Unclustered Index

AN AN

J \ Data entries / \

Data entries]
/A [\ NN m /X

/e L NN Datafiley /X N\J o< e

Data Records Data Records

CLUSTERED UNCLUSTERED

Secondary Indexes

e Applications:
— 1ndex other attributes than primary key

— 1ndex unsorted files (heap files)

— 1index clustered data

25

B+ Trees

e Search trees

e [deain B Trees:
— make 1 node = 1 block

e |dea in B+ Trees:

— Make leaves into a linked list (range queries are
easier)

26

B+ Trees Basics

e Parameter d = the degree

e Each node has >= ¢

- and <= 2d keys (except root)

30

120

240

/

~

/

Keys k < 30

I

N\

\

Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

e Each leaf has >=d and <= 2d keys:

40

50

60

/

-+ Next leaf

/

40

I

50

N\

60

27

B+ Tree Example

\\

d = 2 Find the key 40
80
20 60 100 | 120 | 140
\ T i
20 % 40 < 60
10 | 15| 18 20 [30] 40 | 50 60 | 65 80 [85| 90
/ \ / L1 \ yaw,
30 440 < 4
y y A \ 4
10 15 18 20 30 || 40 50 || 60 || 65 80 85 90

28

B+ Tree Design

How large d ?
Example:
— Key size = 4 bytes
— Pointer size = 8 bytes
— Block si1ze = 4096 byes

2d x4 + (2d+1) x 8 <= 4096
d=170

29

Searching a B+ Tree

 Exact key values: Select name

— Start at the root From people
— Proceed down, to the leaf Where age = 25

e Range queries: Select name
From people

Where 20 <= age
and age <= 30

— As above

— Then sequential traversal

30

B+ Trees 1n Practice

e Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

e Typical capacities:
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records

e (Can often hold top levels 1n buffer pool:
— Level 1 = 1 page = 8 Kbytes
— Level 2= 133 pages= 1 Mbyte
— Level 3 =17,689 pages = 133 MBytes

Insert (K, P)
* Find leaf where K belongs, insert

e If no overflow (2d keys or less), halt

Insertion 1n a B+ Tree

e If overflow (2d+1 keys), split node, insert 1n parent:

parent

—

K1

K2

K3

K4

K5

PO

Pl

P2

P3

P4

pS

ﬁ

parent

—

K3

K1

K2

K4

K5

PO

Pl

P2

P3

P4

e If leaf, keep K3 too in right node

 When root splits, new root has 1 key only

32

Insertion 1n a B+ Tree

Insert K=19
30
// ~
20 | 60 100 | 120 | 140
\ ~ ~
10 [15] 18 20 [30 | 40 | 50 60 | 65 80 | 85 | 90
T / L[\ \ /1y 1

10 15 18 20 30 || 40 50 (| 60 || 65|80 85 90

33

Insertion 1n a B+ Tree

After insertion

30
// ~
20 | 60 100 | 120 | 140
\ ~ ~
10 [15] 18 | 19 20 [30 | 40 | 50 60 | 65 80 | 85 | 90
ol vy ! L[\ \ /1y 1

LAV LV

10 15| 18| 19 || 20 | 30 || 40 50 (| 60 || 65|80 85 90

34

Insertion 1n a B+ Tree

Now insert 25

30
// ~
20 | 60 100 | 120 | 140
\ ~ ~
10 [15] 18 | 19 20 [30 | 40 | 50 60 | 65 80 | 85 | 90
ol vy ! L[\ \ /1y 1

LAV LV

10 15| 18| 19 || 20 | 30 || 40 50 (| 60 || 65|80 85 90

35

Insertion 1n a B+ Tree

After insertion

30
// ~
20 | 60 100 | 120 | 140
\ N ~
10 [15] 18 | 19 20 [25| 30 | 40 | 50 60 | 65 80 | 85 | 90
ol vy ! RN ENE w41 /1y 1

LAV AN

10 15| 18| 19|20 (| 25|30 (|40 |50 || 60| 65]| 80 85 90

36

Insertion 1n a B+ Tree

But now have to split !

30
// ~
20 | 60 100 | 120 | 140
\ N ~
10 [15] 18 | 19 20 (25] 30 | 40 | 50 60 | 65 80 | 85 | 90
ol vy ! RN ENE w41 /1y 1

LAV LA

10 15|18 19|20 (| 25]|[30(|40 |50 || 60| 65]| 80 85 90

37

Insertion 1n a B+ Tree

After the split
80
// T~
20 | 30 | 60 100 | 120 | 140
\ ~N o~ ~

15| 18 | 19 20 | 25 30 | 40 | 50 60 | 65 80 | 85| 90
\\ \\ j 7 \‘T \ | T /1 /1
15 18 | 19 ([20 (| 25 || 30 || 40 501160]| 65| 80 85 90

38

Deletion from a B+ Tree

Delete 30
30
// ~
20 | 30 | 60 100 | 120 | 140
\ ~

10 [15] 18 | 19 20 | 25 30 | 40 | 50 60 | 65 80 | 85 | 90
| \ \\ \\ j 7 \‘T \ | T /1l /1
10 15 18 || 19 || 20 25 30 40 50 60 65 80 85 90

39

Deletion from a B+ Tree
After deleting 30

May change to 80
40, or not
— |~
20 | 30 | 60 100 | 120 | 140
\ i

10 [15| 18 | 19 20 | 25 40 | 50 60 | 65 80 | 85| 90
/ \ \\ \\ j 7/ 1 | 1 N s i /1 /1
10 15 18 [| 19 || 20 || 25 40 50 (| 60 || 65 80 85 90

40

Deletion from a B+ Tree

Now delete 25
80
// ~
20 | 30 | 60 100 | 120 | 140
\ ~ ~
15 18 | 19 20 | 25 40 | 50 60 | 65 80 | 85 | 90

SIS AR

=

=

S
'\:i

y
60 [| 65 || 80 85 90

25 40

41

Deletion from a B+ Tree

After deleting 25
Need to rebalance
80

Rotate

// ~

20 | 30 | 60 100 | 120 | 140

\ ~ ~

15 18 | 19 20 40 | 50 60 | 65 80 | 85 | 90
) ! 11/ 1T\l T /1l /1

\V \ \ j / \ 4
15 || 18 || 19 || 20 40 \50 60 [| 65 || 80 85 90

42

Deletion from a B+ Tree

Now delete 40
30
// ~
19 | 30 | 60 100 | 120 | 140
\ ~

10 [15| 18 19 | 20 40 | 50 60 | 65 80 | 85 | 90
| \ \\ /7/ 7/ T\l T /1l /1
10 15 18 || 19 || 20 40 \50 60 65 80 85 90

43

Deletion from a B+ Tree

After deleting 40
Rotation not possibl

80

Need to merge nodes|

10

10

Deletion from a B+ Tree

Final tree
80
// ~
19 | 60 100 | 120 | 140
\ ~ ~ ~

15| 18 19 [20 | 50 60 | 65 80 | 85 | 90
\ \\ //// — \ : \ 1" / /1T
15 18 (| 19 || 20 50 60 65 80 85 90

45

Summary on B+ Trees

Default index structure on most DBMS

Very effective at answering ‘point’ queries:
productName = ‘gizmo’

Effective for range queries:
50 < price AND price < 100

Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

46

