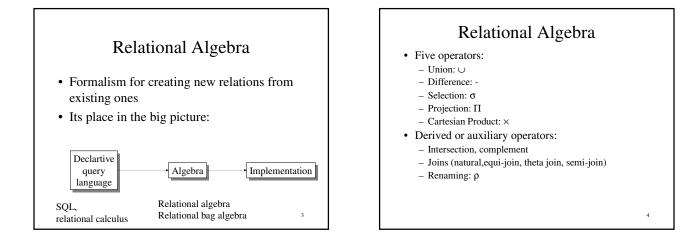
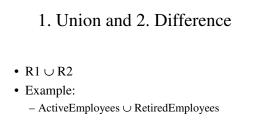


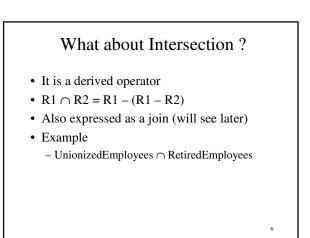
Friday, November 17, 2006


DBMS Architecture

How does a SQL engine work ?


- SQL query \rightarrow relational algebra plan
- Relational algebra plan \rightarrow Optimized plan

2


• Execute each operator of the plan

1

- R1 R2
- Example: - AllEmployees -- RetiredEmployees

3. Selection

- Returns all tuples which satisfy a condition
- Notation: $\sigma_{c}(R)$
- Examples
 - $\sigma_{_{Salary > 40000}}$ (Employee)
 - $\sigma_{\text{name}="Smith"}$ (Employee)
- The condition c can be =, <, \leq , >, \geq , <>

	SSN	Name	Salary
Γ	1234545	John	200000
	5423341	Smith	600000
Γ	4352342	Fred	500000

 $\sigma_{\rm Salary}$

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

4. Projection

- · Eliminates columns, then removes duplicates
- Notation: $\Pi_{A1,...,An}(R)$
- Example: project social-security number and names:
 - $\Pi_{SSN, Name}$ (Employee)
 - Output schema: Answer(SSN, Name)

	SS	SN	Na	me	Sal	ary
	1234545 5423341 4352342		Jo	hn	200	000
			John	600000 200000		
			John			
ne,Salary (Emp	oloyee)					
_{ne,Salary} (Emp	oloyee)	Na	me	Sal	arv	
_{ne,Salary} (Emp	loyee)			Sal 200		

5. Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: $R1 \times R2$
- Example:
 - $\ Employee \times Dependents$
- Very rare in practice; mainly used to express joins

 Employee

 Name
 SSN

 John
 999999999

 Tony
 77777777

 Dependents
 EmployeeSSN
 Dname

 99999999
 Emily
 77777777

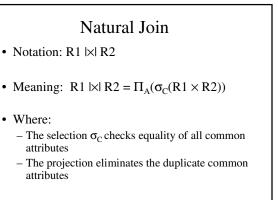
Cartesian Product Example

Employee x Dependents EmployeeSSN Dname 999999999 Emily SSN Name 9999999999 John Emily 9999999999 John Joe 9999999999 Tony 777777777 Emily 777777777 Tony Joe 12

11

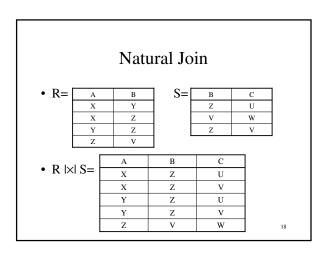
Relational Algebra

- Five operators:
 - Union: \cup
 - Difference: Selection: σ
 - Selection: 6
 Projection: Π
 - Cartesian Product: ×
- Derived or auxiliary operators:
 - Intersection, complement
 - Joins (natural, equi-join, theta join, semi-join)

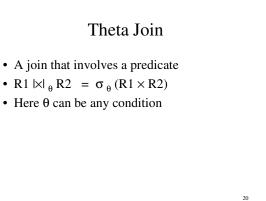

13

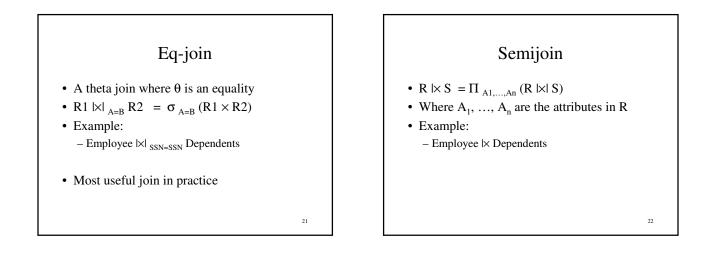
Renaming: p

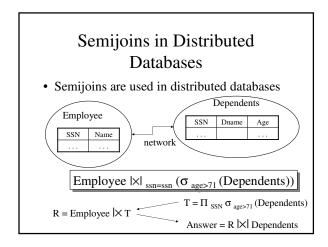
Renaming

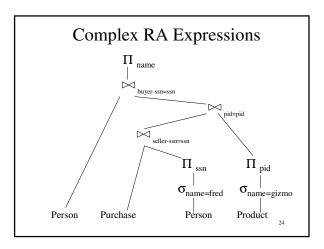

- Changes the schema, not the instance
- Notation: $\rho_{B1,...,Bn}(R)$
- Example:
 - $\ \rho_{LastName, \ SocSocNo} \ (Employee)$
 - Output schema:
 - Answer(LastName, SocSocNo)

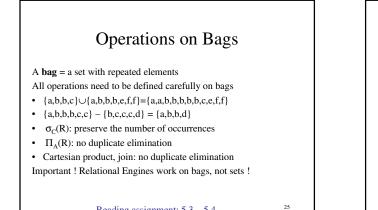
Employee		
Name	SSN	
John	999999999	
Tony	77777777	
	ocSocNo (Employee)	
ρ _{LastName, S} LastName John	ocSocNo (Employee) SocSocNo 999999999	


14

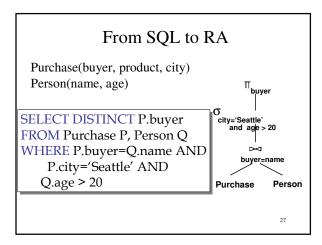

F 1		
Employee	9	
Name		SSN
John		999999999
Tony		777777777
Depender	nts	
SSN		Dname
99999999	9	Emily
<u></u>	7	Joe
Employee 🖂 I	Dependents =	
Π _{Name, SSN, Dname}	e(σ _{SSN=SSN2} (Ei	mployee x $\rho_{SSN2, Dname}$ (Dependents))
Name	SSN	Dname
John	9999999999	Emily
Tony	777777777777777777777777777777777777777	Joe

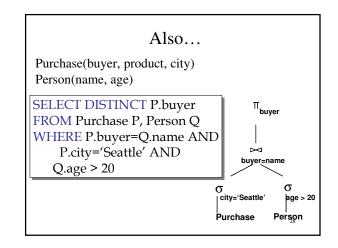


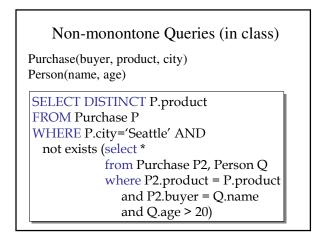

Natural Join


- Given the schemas R(A, B, C, D), S(A, C, E), what is the schema of R |×| S ?
- Given R(A, B, C), S(D, E), what is R |x| S?
- Given R(A, B), S(A, B), what is $R |\times| S$?

Reading assignment: 5.3 - 5.4

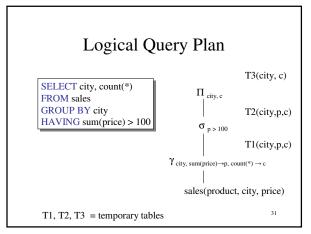

Note: RA has Limitations !

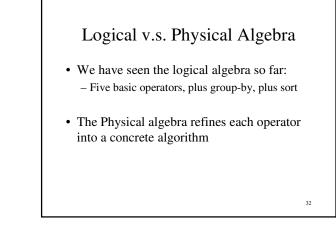

· Cannot compute "transitive closure"

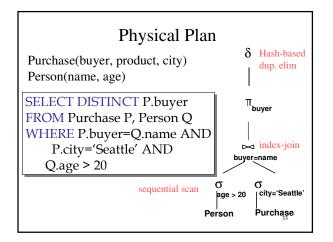

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

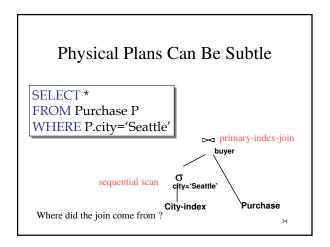
26

- · Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write C program








Extended Logical Algebra Operators (operate on Bags, not Sets)

- Union, intersection, difference
- Selection σ
- Projection Π
- Join |x|
- Duplicate elimination δ
- Grouping γ
- Sorting τ

