
1

Lecture 21:

Query Execution

Monday, November 20, 2006

2

Outline

• Hash-tables (13.4)

• Query execution: 15.1 – 15.5

3

Architecture of a Database Engine

Parse Query

Select Logical Plan

Select Physical Plan

Query Execution

SQL query

Query

optimization

Logical

plan

Physical

plan

4

Logical Algebra Operators

• Union, intersection, difference

• Selection σ

• Projection Π

• Join |x|

• Duplicate elimination δ

• Grouping γ

• Sorting τ

5

Logical Query Plan

SELECT city, count(*)

FROM sales

GROUP BY city

HAVING sum(price) > 100

SELECT city, count(*)

FROM sales

GROUP BY city

HAVING sum(price) > 100

sales(product, city, price)

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3 = temporary tables

6

Logical Query Plan

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

σ

Purchase(buyer, city)

Person(name, phone)

7

Physical Query Plan

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND

Q.phone > ‘5430000’

SELECT S.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

Q.city=‘seattle’ AND

Q.phone > ‘5430000’

Query Plan:

• logical tree

• implementation

choice at every

node

• scheduling of

operations.

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

(Simple Nested Loops)

σ

(Table scan) (Index scan)

Some operators are from relational
algebra, and others (e.g., scan)

are not.

8

Question in Class

Logical operator:

Product(pname, cname) |××××| Company(cname, city)

Propose three physical operators for the join, assuming
the tables are in main memory:

1.

2.

3.

9

Question in Class

Product(pname, cname) |x| Company(cname, city)

• 1000000 products

• 1000 companies

How much time do the following physical operators take if the data
is in main memory ?

• Nested loop join time =

• Sort and merge = merge-join time =

• Hash join time =

10

Cost Parameters

The cost of an operation = total number of I/Os

result assumed to be delivered in main memory

Cost parameters:

• B(R) = number of blocks for relation R

• T(R) = number of tuples in relation R

• V(R, a) = number of distinct values of attribute a

• M = size of main memory buffer pool, in blocks

11

Cost Parameters

• Clustered table R:

– Blocks consists only of records from this table

– B(R) << T(R)

• Unclustered table R:

– Its records are placed on blocks with other tables

– B(R) ≈ T(R)

• When a is a key, V(R,a) = T(R)

• When a is not a key, V(R,a)

12

Selection and Projection

Selection σ(R), projection Π(R)

• Both are tuple-at-a-time algorithms

• Cost: B(R)

Input buffer Output bufferUnary

operator

13

Hash Tables

• Key data structure used in many operators

• May also be used for indexes, as alternative to B+trees

• Recall basics:

– There are n buckets

– A hash function f(k) maps a key k to {0, 1, …, n-1}

– Store in bucket f(k) a pointer to record with key k

• Secondary storage: bucket = block, use overflow

blocks when needed

14

• Assume 1 bucket (block) stores 2 keys +

pointers

• h(e)=0

• h(b)=h(f)=1

• h(g)=2

• h(a)=h(c)=3

Hash Table Example

c

a

g

f

b

e
0

1

2

3

Here: h(x) = x mod 4Here: h(x) = x mod 4

15

• Search for a:

• Compute h(a)=3

• Read bucket 3

• 1 disk access

Searching in a Hash Table

c

a

g

f

b

e
0

1

2

3

16

• Place in right bucket, if space

• E.g. h(d)=2

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

17

• Create overflow block, if no space

• E.g. h(k)=1

• More over-
flow blocks
may be needed

Insertion in Hash Table

c

a

d

g

f

b

e
0

1

2

3

k

18

Hash Table Performance

• Excellent, if no overflow blocks

• Degrades considerably when number of

keys exceeds the number of buckets (I.e.

many overflow blocks).

19

Main Memory Hash Join

Hash join: R |x| S

• Scan S, build buckets in main memory

• Then scan R and join

• Cost: B(R) + B(S)

• Assumption: B(S) <= M

20

Duplicate Elimination

Duplicate elimination δ(R)

• Hash table in main memory

• Cost: B(R)

• Assumption: B(δ(R)) <= M

21

Grouping

Grouping:

Product(name, department, quantity)

γdepartment, sum(quantity) (Product) �

Answer(department, sum)

Main memory hash table

Question: How ?

22

Nested Loop Joins

• Tuple-based nested loop R ⋈ S

• Cost: T(R) B(S) when S is clustered

• Cost: T(R) T(S) when S is unclustered

for each tuple r in R do

for each tuple s in S do

if r and s join then output (r,s)

for each tuple r in R do

for each tuple s in S do

if r and s join then output (r,s)

23

Nested Loop Joins

• We can be much more clever

• Question: how would you compute the join in the
following cases ? What is the cost ?

– B(R) = 1000, B(S) = 2, M = 4

– B(R) = 1000, B(S) = 3, M = 4

– B(R) = 1000, B(S) = 6, M = 4

24

Nested Loop Joins

• Block-based Nested Loop Join

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if “r and s join” then output(r,s)

for each (M-2) blocks bs of S do

for each block br of R do

for each tuple s in bs

for each tuple r in br do

if “r and s join” then output(r,s)

25

Nested Loop Joins

. . .

. . .

R & S
Hash table for block of S

(M-2 pages)

Input buffer for R Output buffer

. . .

Join Result

26

Nested Loop Joins

• Block-based Nested Loop Join

• Cost:

– Read S once: cost B(S)

– Outer loop runs B(S)/(M-2) times, and each
time need to read R: costs B(S)B(R)/(M-2)

– Total cost: B(S) + B(S)B(R)/(M-2)

• Notice: it is better to iterate over the smaller
relation first

• R |x| S: R=outer relation, S=inner relation

27

Index Based Join

• R S

• Assume S has an index on the join attribute

��

for each tuple r in R do

lookup the tuple(s) s in S using the index

output (r,s)

for each tuple r in R do

lookup the tuple(s) s in S using the index

output (r,s)

28

Index Based Join

Cost (Assuming R is clustered):

• If index is clustered: B(R) + T(R)B(S)/V(S,a)

• If index is unclustered: B(R) + T(R)T(S)/V(S,a)

29

Zig-zag Index Based Join

• Assume both R and S have a sorted index

(B+ tree) on the join attribute

• Then perform a merge join

– called zig-zag join

• Cost: B(R) + B(S)

30

Index Based Selection

Selection on equality: σa=v(R)

• Clustered index on a: cost B(R)/V(R,a)

• Unclustered index on a: cost T(R)/V(R,a)

– We have seen that this is like a join

31

Index Based Selection

• Example:

• Table scan (assuming R is clustered):

– B(R) = 2,000 I/Os

• Index based selection:

– If index is clustered: B(R)/V(R,a) = 100 I/Os

– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson: don’t build unclustered indexes when V(R,a) is
small !

B(R) = 2000

T(R) = 100,000

V(R, a) = 20

B(R) = 2000

T(R) = 100,000

V(R, a) = 20
cost of σa=v(R) = ?cost of σa=v(R) = ?

32

Operations on Very Large Tables

• Partitioned hash algorithms

• Merge-sort algorithms

33

Partitioned Hash Algorithms

• Idea: partition a relation R into buckets, on disk

• Each bucket has size approx. B(R)/M

M main memory buffers DiskDisk

Relation R
OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

1

2

B(R)

• Does each bucket fit in main memory ?

–Yes if B(R)/M <= M, i.e. B(R) <= M2

34

Duplicate Elimination

• Recall: δ(R) = duplicate elimination

• Step 1. Partition R into buckets

• Step 2. Apply δ to each bucket (may read in

main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

35

Grouping

• Recall: γ(R) = grouping and aggregation

• Step 1. Partition R into buckets

• Step 2. Apply γ to each bucket (may read in

main memory)

• Cost: 3B(R)

• Assumption:B(R) <= M2

36

Partitioned Hash Join

R |x| S

• Step 1:

– Hash S into M buckets

– send all buckets to disk

• Step 2

– Hash R into M buckets

– Send all buckets to disk

• Step 3

– Join every pair of buckets

37

Hash-Join
• Partition both relations using

hash fn h: R tuples in

partition i will only match S

tuples in partition i.

� Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions

of R & S

Input buffer
for Ri

Hash table for partition

Si (< M-1 pages)

B main memory buffersDisk

Output

buffer

Disk

Join Result

hash
fn

h2

h2

B main memory buffers DiskDisk

Original

Relation OUTPUT

2INPUT

1

hash
function

h M-1

Partitions

1

2

M-1

. . .

38

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)

• Assumption: min(B(R), B(S)) <= M2

39

External Sorting

• Problem:

• Sort a file of size B with memory M

• Where we need this:

– ORDER BY in SQL queries

– Several physical operators

– Bulk loading of B+-tree indexes.

• Will discuss only 2-pass sorting, for when B < M2

40

External Merge-Sort: Step 1

• Phase one: load M bytes in memory, sort

DiskDisk

.
M

Main memory

Runs of length M bytes

41

External Merge-Sort: Step 2

• Merge M – 1 runs into a new run

• Result: runs of length M (M – 1)≈ M2

DiskDisk

.

Input M

Input 1

Input 2
. . . .

Output

If B <= M2 then we are done

Main memory

42

Cost of External Merge Sort

• Read+write+read = 3B(R)

• Assumption: B(R) <= M2

43

Duplicate Elimination

Duplicate elimination δ(R)

• Idea: do a two step merge sort, but change
one of the steps

• Question in class: which step needs to be
changed and how ?

• Cost = 3B(R)

• Assumption: B(δ(R)) <= M2

44

Grouping

Grouping: γa, sum(b) (R)

• Same as before: sort, then compute the

sum(b) for each group of a’s

• Total cost: 3B(R)

• Assumption: B(R) <= M2

45

Merge-Join

Join R |x| S

• Step 1a: initial runs for R

• Step 1b: initial runs for S

• Step 2: merge and join

46

Merge-Join

Main memory

DiskDisk

.

Input M

Input 1

Input 2
. . . .

Output

M1 = B(R)/M runs for R

M2 = B(S)/M runs for S

If B <= M2 then we are done

47

Two-Pass Algorithms Based on

Sorting

Join R |x| S

• If the number of tuples in R matching those

in S is small (or vice versa) we can compute

the join during the merge phase

• Total cost: 3B(R)+3B(S)

• Assumption: B(R) + B(S) <= M2

48

Summary of External Join

Algorithms
• Block Nested Loop: B(S) + B(R)*B(S)/M

• Index Join: B(R) + T(R)B(S)/V(S,a)

• Partitioned Hash: 3B(R)+3B(S);

– min(B(R),B(S)) <= M2

• Merge Join: 3B(R)+3B(S

– B(R)+B(S) <= M2

