
1

Lecture 24:
Query Execution

Monday, November 27, 2006

2

Outline

• Query optimization: algebraic laws 16.2

3

Example

Product(pname, maker), Company(cname, city)

• How do we execute this query ?

Select Product.pname
From Product, Company
Where Product.maker=Company.cname

and Company.city = “Seattle”

Select Product.pname
From Product, Company
Where Product.maker=Company.cname

and Company.city = “Seattle”

4

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

5

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Logical Plan:

6

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

7

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Index-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

Which one is better ??Which one is better ??

8

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:
T(Company) / V(Company, city)
× T(Product) / V(Product, maker)

Total cost:
T(Company) / V(Company, city)
× T(Product) / V(Product, maker)

9

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Table-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

B(Company)

3B(Product)

T(Product)

No extra cost
(why ?)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

10

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Which one is better ??Which one is better ??

It depends on the data !!It depends on the data !!

11

Example

• Case 1: V(Company, city) ≈ T(Company)

• Case 2: V(Company, city) << T(Company)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

V(Company,city) = 2,000V(Company,city) = 2,000

V(Company,city) = 20V(Company,city) = 20

12

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

13

Lessons

• Need to consider several physical plan
– even for one, simple logical plan

• No magic “best” plan: depends on the data
• In order to make the right choice

– need to have statistics over the data
– the B’s, the T’s, the V’s

14

Query Optimzation

• Have a SQL query Q

• Create a plan P

• Find equivalent plans P = P’ = P’’ = …

• Choose the “cheapest”.

HOW ??

15

Logical Query Plan
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND
Q.phone > ‘5430000’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND
Q.phone > ‘5430000’

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

σ

In class:
find a “better” plan P’

P=

Purchasse(buyer, city)
Person(name, phone)

16

Logical Query Plan

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100

sales(product, city, quantity)

γ city, sum(quantity)→p

σ p < 100

T1(city,p)

T2(city,p)

In class:
find a “better” plan P’

Q=

P=

17

The three components of an
optimizer

We need three things in an optimizer:

• Algebraic laws
• An optimization algorithm
• A cost estimator

18

Algebraic Laws

• Commutative and Associative Laws
R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T
R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T
R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

• Distributive Laws
R |×| (S ∪ T) = (R |×| S) ∪ (R |×| T)

19

Algebraic Laws

• Laws involving selection:
σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
σ C OR C’(R) = σ C(R) ∪ σ C’(R)
σ C (R |×| S) = σ C (R) |×| S

• When C involves only attributes of R
σ C (R – S) = σ C (R) – S
σ C (R ∪ S) = σ C (R) ∪ σ C (S)
σ C (R |×| S) = σ C (R) |×| S

20

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)
σ F=3 (R |×| D=E S) = ?
σ A=5 AND G=9 (R |×| D=E S) = ?

21

Algebraic Laws

• Laws involving projections
ΠM(R |×| S) = ΠM(ΠP(R) |×| ΠQ(S))
ΠM(ΠN(R)) = ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R |×| D=E S) = Π ? (Π?(R) |×| D=E Π?(S))

22

Algebraic Laws
• Laws involving grouping and aggregation:

δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

• Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

γA, agg(D)(R(A,B) |×| B=C S(C,D)) =
γA, agg(D)(R(A,B) |×| B=C (γC, agg(D)S(C,D)))

23

Optimizations Based on
Semijoins

THIS IS ADVANCED STUFF; NOT ON
THE FINAL

• R S = Π A1,…,An (R S)
• Where the schemas are:

– Input: R(A1,…An), S(B1,…,Bm)
– Output: T(A1,…,An)

24

Optimizations Based on
Semijoins

Semijoins: a bit of theory (see [AHV])
• Given a query:

• A full reducer for Q is a program:

• Such that no dangling tuples remain in any relation

Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn))Q :- Π (σ (R1 |x| R2 |x| . . . |x| Rn))

Ri1 := Ri1 Rj1
Ri2 := Ri2 Rj2

.
Rip := Rip Rjp

Ri1 := Ri1 Rj1
Ri2 := Ri2 Rj2

.
Rip := Rip Rjp

25

Optimizations Based on
Semijoins

• Example:

• A full reducer is:

Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)Q(A,E) :- R1(A,B) |x| R2(B,C) |x| R3(C,D,E)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

R2(B,C) := R2(B,C) |x R1(A,B)

R3(C,D,E) := R3(C,D,E) |x R2(B,C)

R2(B,C) := R2(B,C) |x R3(C,D,E)

R1(A,B) := R1(A,B) |x R2(B,C)

The new tables have only the tuples necessary to compute Q(E)

26

Optimizations Based on
Semijoins

• Example:

• Doesn’t have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is “acyclic”

Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)Q(E) :- R1(A,B) |x| R2(B,C) |x| R3(A,C, E)

27

Optimizations Based on
Semijoins

• Semijoins in [Chaudhuri’98]

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW DepAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

28

Optimizations Based on
Semijoins

• First idea:

CREATE VIEW LimitedAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

CREATE VIEW LimitedAvgSal As (
SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Dept D
WHERE E.did = D.did AND D.buget > 100k
GROUP BY E.did)

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V
WHERE E.did = D.did AND E.did = V.did

AND E.age < 30 AND D.budget > 100k
AND E.sal > V.avgsal

29

Optimizations Based on
Semijoins

• Better: full reducer
CREATE VIEW PartialResult AS

(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

CREATE VIEW PartialResult AS
(SELECT E.id, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

30

Optimizations Based on
Semijoins

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did = V.did AND P.sal > V.avgsal

