
1

1

Lecture 03: SQL

Monday, January 9, 2006

2

Project

• http://iisqlsrv.cs.washington.edu/444/Projec
t/Default.aspx

• Phase 0: form groups of two. 1/11
• Phase 1: design database. 1/25
• Phase 2: import data, provide logic. 2/8
• Phase 3: checkout logic. 2/22
• Phase 4: publish/consume XML data. 3/8

2

3

Outline

• Subqueries (6.3)
• Aggregations (6.4.3 – 6.4.6)

Read the entire chapter 6 !

Suggestion:
“SQL for Nerds”: chapter 4, “More Complex queries”
(you will find it very useful for subqueries)

4

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:

sum, count, min, max, avg

3

5

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category)
FROM Product
WHERE year > 1995

SELECT Count(category)
FROM Product
WHERE year > 1995

same as Count(*)

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

Aggregation: Count

6

Purchase(product, date, price, quantity)

More Examples

SELECT Sum(price * quantity)
FROM Purchase
SELECT Sum(price * quantity)
FROM Purchase

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

What do
they mean ?

4

7

Simple AggregationsPurchase

201.5010/25Bagel
10110/10Banana
100.510/3Banana
20110/21Bagel

QuantityPriceDateProduct

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

50 (= 20+30)

8

Grouping and Aggregation
Purchase(product, date, price, quantity)

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

Let’s see what this means…

Find total sales after 10/1/2005 per product.

5

9

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.

2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

10

1&2. FROM-WHERE-GROUPBY

201.5010/25Bagel

10110/10Banana
100.510/3Banana

20110/21Bagel
QuantityPriceDateProduct

6

11

3. SELECT

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

201.5010/25Bagel

10110/10Banana
100.510/3Banana

20110/21Bagel
QuantityPriceDateProduct

15Banana

50Bagel

TotalSalesProduct

12

GROUP BY v.s. Nested Quereis

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘10/1/2005’)
AS TotalSales

FROM Purchase x
WHERE x.date > ‘10/1/2005’

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)
FROM Purchase y
WHERE x.product = y.product

AND y.date > ‘10/1/2005’)
AS TotalSales

FROM Purchase x
WHERE x.date > ‘10/1/2005’

7

13

Another Example

SELECT product,
sum(price * quantity) AS SumSales
max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

SELECT product,
sum(price * quantity) AS SumSales
max(quantity) AS MaxQuantity

FROM Purchase
GROUP BY product

What does
it mean ?

14

HAVING Clause

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING Sum(quantity) > 30

SELECT product, Sum(price * quantity)
FROM Purchase
WHERE date > ‘10/1/2005’
GROUP BY product
HAVING Sum(quantity) > 30

Same query, except that we consider only products that had
at least 100 buyers.

HAVING clause contains conditions on aggregates.

8

15

General form of Grouping and
Aggregation

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

S = may contain attributes a1,…,ak and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R1,…,Rn

C2 = is any condition on aggregate expressions

Why ?

16

General form of Grouping and
Aggregation

Evaluation steps:
1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a1,…,ak

3. Apply condition C2 to each group (may have aggregates)
4. Compute aggregates in S and return the result

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

9

17

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT

2. Quantifiers

3. Aggregation v.s. subqueries

18

1. INTERSECT and EXCEPT:

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

INTERSECT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

(SELECT R.A, R.B
FROM R)

EXCEPT
(SELECT S.A, S.B
FROM S)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

SELECT R.A, R.B
FROM R
WHERE

NOT EXISTS(SELECT *
FROM S
WHERE R.A=S.A and R.B=S.B)

If R, S have no
duplicates, then can

write without
subqueries
(HOW ?)

INTERSECT and EXCEPT: not in SQL Server

10

19

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy ! ☺

20

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies s.t. all of their products have price < 100

Universal: hard ! /

Find all companies that make only products with price < 100

same as:

11

21

2. Quantifiers

2. Find all companies s.t. all their products have price < 100

1. Find the other companies: i.e. s.t. some product ≥ 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

SELECT DISTINCT Company.cname
FROM Company
WHERE Company.cname NOT IN (SELECT Product.company

FROM Product
WHERE Produc.price >= 100

22

3. Group-by v.s. Nested Query

• Find authors who wrote ≥ 10 documents:
• Attempt 1: with nested queries

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url

FROM Wrote
WHERE Author.login=Wrote.login)

> 10

This is
SQL by
a novice

Author(login,name)
Wrote(login,url)

12

23

3. Group-by v.s. Nested Query

• Find all authors who wrote at least 10
documents:

• Attempt 2: SQL style (with GROUP BY)

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name
HAVING count(wrote.url) > 10

This is
SQL by
an expert

No need for DISTINCT: automatically from GROUP BY

24

3. Group-by v.s. Nested Query

Find authors with vocabulary ≥ 10000 words:

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

SELECT Author.name
FROM Author, Wrote, Mentions
WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name
HAVING count(distinct Mentions.word) > 10000

Author(login,name)
Wrote(login,url)
Mentions(url,word)

