Lecture 03: SQL

Monday, January 9, 2006

Project

Phase 0: form groups of two. 1/11

Phase 1: design database. 1/25

Phase 2: import data, provide logic. 2/8
Phase 3: checkout logic. 2/22

Phase 4: publish/consume XML data. 3/8

Qutline

» Subqueries (6.3)
» Aggregations (6.4.3 — 6.4.6)

Read the entire chapter 6 !

Suggestion:
“SQL for Nerds”: chapter 4, “More Complex queries”
(you will find it very useful for subqueries)

Aggregation
SELECT avg(price) SELECT count(*)
FROM Product FROM Product
WHERE maker="“Toyota” WHERE year > 1995

SQL supports several aggregation operations:

sum, count, min, max, avg

Except count, all aggregations apply to a single attribute

Aggregation: Count

COUNT applies to duplicates, unless otherwise stated:

SELECT Count(category) | same as Count(*)
FROM Product
WHERE year > 1995

We probably want:

SELECT Count(DISTINCT category)
FROM Product
WHERE year > 1995

More Examples

Purchase(product, date, price, quantity)

SELECT Sum(price * quantity)
FROM Purchase

What do

they mean ?

SELECT Sum(price * quantity)
FROM Purchase
WHERE product = ‘bagel’

Simple Aggregations

Purchase
Product Date Price | Quantity
Bagel 10/21 1 20
Banana 10/3 0.5 10
Banana 10/10 1 10
Bagel 10/25 1.50 20
SELECT Sum(price * quantity)
FROM Purchase 50 (=20+30)

WHERE product = ‘bagel’

7

Grouping and Aggregation

Purchase(product, date, price, quantity)

Find total sales after 10/1/2005 per product.

SELECT product, Sum(price*quantity) AS TotalSales
FROM Purchase

WHERE date > “10/1/2005’

GROUP BY product

Let’s see what this means...

Grouping and Aggregation

1. Compute the FROM and WHERE clauses.
2. Group by the attributes in the GROUPBY

3. Compute the SELECT clause: grouped attributes and aggregates.

1&2. FROM-WHERE-GROUPBY

Product Date Price Quantity
Bagel 10/21 1 20
Bagel 10/25 1.50 20

Banana 10/3 0.5 10

Banana 10/10 1 10

10

3. SELECT

Product Date Price | Quantity Product | TotalSales
Bagel | 10/21 1 20
Bagel | 10/25 | 150 20 :> Bagel 50
Banana 10/3 0.5 10 Banana 15
Banana 10/10 1 10

SELECT product, Sum(price*quantity) AS TotalSales

FROM Purchase

WHERE date > “10/1/2005’

GROUP BY product

11

GROUP BY v.s. Nested Quereis

SELECT
FROM

WHERE
GROUP BY product

product, Sum(price*quantity) AS TotalSales

Purchase
date > “10/1/2005’

SELECT DISTINCT x.product, (SELECT Sum(y.price*y.quantity)

FROM
WHERE

FROM Purchase y

WHERE x.product = y.product
AND y.date > “10/1/2005")

AS TotalSales

Purchase x
x.date > “10/1/2005’

Another Example

What does
it mean ?

SELECT product,

sum(price * quantity) AS SumSales

max(quantity) AS MaxQuantity
FROM Purchase

GROUP BY product

13

HAVING Clause

Same query, except that we consider only products that had
at least 100 buyers.

SELECT product, Sum(price * quantity)
FROM Purchase

WHERE date > “10/1/2005’

GROUP BY product

HAVING Sum(quantity) > 30

HAVING clause contains conditions on aggregates.

14

General form of Grouping and

Aggregation
SELECT S
FROM R,,...R,
WHERE C1
GROUP BY a,...,a
HAVING C2

S = may contain attributes a,,...,a, and/or any aggregates but NO OTHER
ATTRIBUTES

C1 = is any condition on the attributes in R,,...,R
C2 =is any condition on aggregate expressions

15

General form of Grouping and
Aggregation

SELECT S
FROM Ry,....R,
WHERE C1
GROUP BY aj,...,a
HAVING C2

Evaluation steps:
1. Evaluate FROM-WHERE, apply condition C1

2. Group by the attributes a,,...,a,
3. Apply condition C2 to each group (may have aggregates)
4

Compute aggregates in S and return the result 1

Advanced SQLizing

1. Getting around INTERSECT and EXCEPT
2. Quantifiers

3. Aggregation v.s. subqueries

17

[INTERSECT and EXCEPT: not in SQL Server]

1. INTERSECT and EXC

If R, S have no
duplicates, then can
write without

(SELECT R.A, R.B SELECT RA, R.B Liﬁg’ﬁi
FROM R) FROM R
INTERSECT WHERE
(SELECT S.A, S.B EXISTS(SELECT *
FROM) FROM S
WHERE R.A=S.A and R.B=S.B)

(SELECTR.A,RB SELECTRA,R.B
FROM R) FROM R
EXCEPT WHERE
(SELECT S.A, SB NOT EXISTS(SELECT *
FROM) FROM S
WHERE R.A=S.A and R.B=S.B)

18

2. Quantifiers

Product (pname, price, company)
Company(cname, city)

Find all companies that make some products with price < 100

SELECT DISTINCT Company.cname
FROM Company, Product
WHERE Company.cname = Product.company and Product.price < 100

Existential: easy ! ©

19

2. Quantifiers

Product (pname, price, company)
Company(cname, city)
Find all companies that make only products with price < 100
same as:

Find all companies s.t. all of their products have price < 100

Universal; hard! ®

20

10

2. Quantifiers

1. Find the other companies: i.e. s.t. some product > 100

SELECT DISTINCT Company.cname

FROM Company

WHERE Company.cname IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

2. Find all companies s.t. all their products have price < 100

SELECT DISTINCT Company.cname

FROM Company

WHERE Company.cname NOT IN (SELECT Product.company
FROM Product
WHERE Produc.price >= 100

21

3. Group-by v.s. Nested Query
Author(login,name)

Wrote(login,url)

e Find authors who wrote > 10 document

« Attempt 1: with nested queries !
a novice

SELECT DISTINCT Author.name
FROM Author
WHERE count(SELECT Wrote.url
FROM Wrote
WHERE Author.login=Wrote.login)
>10

11

3. Group-by v.s. Nested Query

e Find all authors who wrote at least 10
documents:

o Attempt 2: SQL style (with GROUP BY)

This is
SQL by
an expert

SELECT Author.name
FROM Author, Wrote
WHERE Author.login=Wrote.login
GROUP BY Author.name

HAVING count(wrote.url) > 10

No need for DISTINCT: automatically from GROUP BY 23

3. Group-by v.s. Nested Query

Author(login,name)
Wrote(login,url)
Mentions(url,word)

Find authors with vocabulary > 10000 words:

SELECT Author.name

FROM Author, Wrote, Mentions

WHERE Author.login=Wrote.login AND Wrote.url=Mentions.url
GROUP BY Author.name

HAVING count(distinct Mentions.word) > 10000

24

12

