
1

1

Lecture 04: SQL

Wednesday, January 11, 2006

2

Outline

• Two Examples
• Nulls (6.1.6)
• Outer joins (6.3.8)
• Database Modifications (6.5)

2

3

Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

Find all stores that sell only products with price > 100

same as:

Find all stores s.t. all their products have price > 100)

4

SELECT Store.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECT Store.name
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.name
HAVING 100 < min(Product.price)

SELECT Store.name
FROM Store
WHERE Store.sid NOT IN

(SELECT Product.sid
FROM Product
WHERE Product.price <= 100)

SELECT Store.name
FROM Store
WHERE Store.sid NOT IN

(SELECT Product.sid
FROM Product
WHERE Product.price <= 100)

SELECT Store.name
FROM Store
WHERE

100 < ALL (SELECT Product.price
FROM product
WHERE Store.sid = Product.sid)

SELECT Store.name
FROM Store
WHERE

100 < ALL (SELECT Product.price
FROM product
WHERE Store.sid = Product.sid)

Almost equivalent…

Why both ?

3

5

Two Examples

Store(sid, sname)
Product(pid, pname, price, sid)

For each store,
find its most expensive product

6

Two Examples

SELECT Store.sname, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.sname

SELECT Store.sname, max(Product.price)
FROM Store, Product
WHERE Store.sid = Product.sid
GROUP BY Store.sid, Store.sname

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

SELECT Store.sname, x.pname
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

This is easy but doesn’t do what we want:

Better:

But may
return
multiple
product names
per store

4

7

Two Examples

SELECT Store.sname, max(x.pname)
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

GROUP BY Store.sname

SELECT Store.sname, max(x.pname)
FROM Store, Product x
WHERE Store.sid = x.sid and

x.price >=
ALL (SELECT y.price

FROM Product y
WHERE Store.sid = y.sid)

GROUP BY Store.sname

Finally, choose some pid arbitrarily, if there are many
with highest price:

8

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL
• Can mean many things:

– Value does not exists
– Value exists but is unknown
– Value not applicable
– Etc.

• The schema specifies for each attribute if can be null
(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

5

9

Null Values

• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe” is UNKNOWN
• In SQL there are three boolean values:

FALSE = 0
UNKNOWN = 0.5
TRUE = 1

10

Null Values
• C1 AND C2 = min(C1, C2)
• C1 OR C2 = max(C1, C2)
• NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

6

11

Null Values
Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

12

Null Values
Can test for NULL explicitly:

– x IS NULL
– x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

7

13

Outerjoins
Explicit joins in SQL = “inner joins”:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

14

Outerjoins
Left outer joins in SQL:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

8

15

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

NULLOneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

16

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

What’s wrong ?

9

17

Application
Compute, for each product, the total number of sales in ‘September’

Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

Now we also get the products who sold in 0 quantity

18

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

10

19

Modifying the Database

Three kinds of modifications
• Insertions
• Deletions
• Updates

Sometimes they are all called “updates”

20

Insertions
General form:

Missing attribute → NULL.
May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

11

21

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

22

Insertion: an Example

prodName is foreign key in Product.name

Suppose database got corrupted and we need to fix it:

gadgets100gizmo

categorylistPricename

225Smithcamera

80Smithgizmo

200Johncamera

pricebuyerNameprodName

Task: insert in Product all prodNames from Purchase

Product

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)
Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Purchase

12

23

Insertion: an Example
INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

--camera

Gadgets100gizmo

categorylistPricename

24

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

-225 ??camera ??

-200camera

Gadgets100gizmo

categorylistPricename

Depends on the implementation

13

25

Deletions

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

26

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

Example:

