Lecture 9: Database Design

Wednesday, January 25, 2006

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}$, is the set of attributes B
s.t. $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{B}$

$$
\begin{array}{ll}
\text { Example: } & \begin{array}{l}
\text { name } \rightarrow \text { color } \\
\text { category } \rightarrow \text { department } \\
\text { color, category } \rightarrow \text { price }
\end{array}
\end{array}
$$

Closures:

```
name \(^{+}=\)\{name, color \(\}\)
\{name, category \(\}^{+}=\)\{name, category, color, department, price \(\}\)
color \(^{+}=\{\)color \(\}\)

\section*{Closure Algorithm}
Start with \(X=\{A 1, \ldots, A n\}\).
Repeat until \(X\) doesn't change do:
if \(\quad B_{1}, \ldots, B_{n} \rightarrow C\) is a FD and
\(\quad B_{1}, \ldots, B_{n}\) are all in \(X\)
then add \(C\) to \(X\).

Example:
name \(\rightarrow\) color category \(\rightarrow\) department color, category \(\rightarrow\) price then add C to X .
\(\{\text { name, category }\}^{+}=\) \{ name, category, color, department, price \}
Hence: name, category \(\rightarrow\) color, department, price 3

\section*{Example}

In class:

R(A,B,C,D,E,F)
\begin{tabular}{lll}
\hline \(\mathrm{A}, \mathrm{B}\) & \(\rightarrow\) & C \\
\(\mathrm{A}, \mathrm{D}\) & \(\rightarrow\) & E \\
B & \(\rightarrow\) & D \\
\(\mathrm{A}, \mathrm{F}\) & \(\rightarrow\) & B \\
\hline
\end{tabular}

Compute \(\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}\),
Compute \(\{\mathrm{A}, \mathrm{F}\}^{+} \mathrm{X}=\{\mathrm{A}, \mathrm{F}\), \}

\section*{Why Do We Need Closure}
- With closure we can find all FD's easily
- To check if \(\mathrm{X} \rightarrow \mathrm{A}\)
- Compute \(\mathrm{X}^{+}\)
- Check if \(\mathrm{A} \in \mathrm{X}^{+}\)

\section*{Using Closure to Infer ALL FDs}

Example:
\[
\begin{array}{|lll}
\hline \mathrm{A}, \mathrm{~B} & \rightarrow & \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow & \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
\]

Step 1: Compute \(\mathrm{X}^{+}\), for every X :
\[
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \quad \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}+=\mathrm{ABCD} \text { (no need to compute-}- \text { why } ? \text { ) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \quad \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
\]

Step 2: Enumerate all FD's \(\mathrm{X} \rightarrow \mathrm{Y}\), s.t. \(\mathrm{Y} \subseteq \mathrm{X}^{+}\)and \(\mathrm{X} \cap \mathrm{Y}=\varnothing\) :
\(\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{B}\)

\section*{Another Example}
- Enrollment(student, major, course, room, time)
student \(\rightarrow\) major
major, course \(\rightarrow\) room
course \(\rightarrow\) time

What else can we infer? [in class, or at home]

\section*{Back to Conceptual Design}

Now we know how to find more FDs, it's easy
- Search for "bad" FDs
- If there are such, then decompose the table into two tables, repeat for the subtables.
- When done, the database schema is normalized

Unfortunately, there are several normal forms...

\section*{Normal Forms}

First Normal Form = all attributes are atomic

Second Normal Form (2NF) = old and obsolete

Third Normal Form (3NF) = will discuss

Boyce Codd Normal Form (BCNF) = will discuss
Others...

\section*{Keys}
- A superkey is a set of attributes \(A_{1}, \ldots, A_{n}\) s.t. for any other attribute \(B\), we have \(A_{1}, \ldots, A_{n} \rightarrow B\)
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

\section*{Computing (Super)Keys}
- Compute \(\mathrm{X}^{+}\)for all sets X
- If \(\mathrm{X}^{+}=\)all attributes, then X is a key
- List only the minimal X's

\section*{Example}

Product(name, price, category, color)
```

name, category }->\mathrm{ price
category }->\mathrm{ color

```

What is the key?

\section*{Example}

Product(name, price, category, color)
```

name, category }->\mathrm{ price
category }->\mathrm{ color

```

What is the key?
(name, category) \(+=\) name, category, price, color
Hence (name, category) is a key

\section*{Examples of Keys}

Enrollment(student, address, course, room, time)

> student \(\rightarrow\) address
> room, time \(\rightarrow\) course
> student, course \(\rightarrow\) room, time
(find keys at home)

\section*{Eliminating Anomalies}

Main idea:
- \(\mathrm{X} \rightarrow \mathrm{A}\) is OK if X is a (super)key
- \(\mathrm{X} \rightarrow \mathrm{A}\) is not OK otherwise

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

SSN \(\rightarrow\) Name, City

What the key?
\{SSN, PhoneNumber\}
Hence SSN \(\rightarrow\) Name, City is a "bad" dependency 16

\section*{Key or Keys?}

Can we have more than one key?

Given \(\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})\) define FD's s.t. there are two or more keys

\section*{Key or Keys?}

Can we have more than one key ?

Given R(A,B,C) define FD's s.t. there are two or more keys
\(\mathrm{AB} \rightarrow \mathrm{C}\)
\(\mathrm{BC} \rightarrow \mathrm{A}\)\(\quad\) or \(\quad\)\begin{tabular}{l}
\(\mathrm{A} \rightarrow \mathrm{BC}\) \\
\(\mathrm{B} \rightarrow \mathrm{AC}\)
\end{tabular}
what are the keys here?
Can you design FDs such that there are three keys?

\section*{Boyce-Codd Normal Form}

A simple condition for removing anomalies from relations:
A relation R is in BCNF if:
If \(A_{1}, \ldots, A_{n} \rightarrow B\) is a non-trivial dependency
in \(R\), then \(\left\{A_{1}, \ldots, A_{n}\right\}\) is a superkey for \(R\)

In other words: there are no "bad" FDs

Equivalently:
\(\forall \mathrm{X}\), either \(\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad\) or \(\quad\left(\mathrm{X}^{+}=\right.\)all attributes \()\)

\section*{BCNF Decomposition Algorithm}

\section*{repeat}
choose \(A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}\) that violates BNCF split \(R\) into \(R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)\) and \(R_{2}\left(A_{1}, \ldots, A_{m}\right.\), [others]) continue with both \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\)
until no more violations


Is there a
2-attribute
relation that is
not in BCNF ?

In practice, we have a better algorithm (coming \({ }^{20}\) up)

\section*{Example}
\begin{tabular}{|l|l|l|l|}
\hline Name & SSN & PhoneNumber & City \\
\hline Fred & \(123-45-6789\) & \(206-555-1234\) & Seattle \\
\hline Fred & \(123-45-6789\) & \(206-555-6543\) & Seattle \\
\hline Joe & \(987-65-4321\) & \(908-555-2121\) & Westfield \\
\hline Joe & \(987-65-4321\) & \(908-555-1234\) & Westfield \\
\hline
\end{tabular}

SSN \(\rightarrow\) Name, City

What the key?
\{SSN, PhoneNumber\} use SSN \(\rightarrow\) Name, City to split

\section*{Example}
\begin{tabular}{|l|l|l|}
\hline Name & SSN & City \\
\hline \multirow{2}{*}{ SSN \(\rightarrow\) Name, City } \\
\hline Fred & \(123-45-6789\) & Seattle \\
\hline Joe & \(987-65-4321\) & Westfield \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline SSN & PhoneNumber \\
\hline \(123-45-6789\) & \(206-555-1234\) \\
\hline \(123-45-6789\) & \(206-555-6543\) \\
\hline \(987-65-4321\) & \(908-555-2121\) \\
\hline \(987-65-4321\) & \(908-555-1234\) \\
\hline
\end{tabular}

Let's check anomalies:
- Redundancy ?
- Update ?
- Delete?

\section*{Example Decomposition}

Person(name, SSN, age, hairColor, phoneNumber)
SSN \(\rightarrow\) name, age
age \(\rightarrow\) hairColor
Decompose in BCNF (in class):

\section*{BCNF Decomposition Algorithm}

BCNF_Decompose(R)
find X s.t.: \(\mathrm{X} \neq \mathrm{X}^{+} \neq[\)all attributes \(]\)
if (not found) then " R is in BCNF"
let \(\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}\)
let \(Z=\) [all attributes] \(-\mathrm{X}^{+}\) decompose R into \(\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})\) and \(\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})\) continue to decompose recursively R1 and R2

\title{
Example BCNF Decomposition
}
```

Person(name, SSN, age, hairColor, phoneNumber)
SSN }->\mathrm{ name, age
age }->\mathrm{ hairColor

```
Iteration 1: Person
SSN + SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
    Phone(SSN, phoneNumber)
Iteration 2: P
age \(+=\) age, hairColor
Decompose: People(SSN, name, age)
    Hair(age, hairColor)
    Phone(SSN, phoneNumber)

What are the keys?


\section*{Decompositions in General}

\(\mathrm{R}_{1}=\) projection of R on \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}\)
\(\mathrm{R}_{2}=\) projection of R on \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}\)

\section*{Theory of Decomposition}
- Sometimes it is correct:


Lossless decomposition

\section*{Incorrect Decomposition}
- Sometimes it is not:


Decompositions in General


If \(A_{1}, \ldots, A_{n} \rightarrow B_{1}, \ldots, B_{m}\)
Then the decomposition is lossless
Note: don't need \(\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}\)
BCNF decomposition is always lossless. WHY ?


\section*{So What's the Problem?}
\begin{tabular}{|l|l|}
\hline Unit & Company \\
\hline Galaga99 & UW \\
\hline Bingo & UW \\
\hline
\end{tabular}\(\quad\)\begin{tabular}{|l|l|}
\hline Unit & Product \\
\hline Galaga99 & Databases \\
\hline Bingo & Databases \\
\hline
\end{tabular}

Unit \(\rightarrow\) Company
No problem so far. All local FD's are satisfied.
Let's put all the data back into a single table again:
\begin{tabular}{|l|l|l|}
\hline Unit & Company & Product \\
\hline Galaga99 & UW & Databases \\
\hline Bingo & UW & Databases \\
\hline
\end{tabular}

Violates the FD:
Company, Product \(\rightarrow\) Unit

\section*{The Problem}
- We started with a table R and FD
- We decomposed R into BCNF tables \(\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots\) with their own \(\mathrm{FD}_{1}, \mathrm{FD}_{2}, \ldots\)
- We can reconstruct R from \(\mathrm{R}_{1}, \mathrm{R}_{2}, \ldots\)
- But we cannot reconstruct FD from \(\mathrm{FD}_{1}, \mathrm{FD}_{2}, \ldots\)

\section*{Solution: 3rd Normal Form (3NF)}

A simple condition for removing anomalies from relations:

A relation R is in 3 rd normal form if :

Whenever there is a nontrivial dependency \(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{B}\) for \(R\), then \(\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}\) a super-key for \(R\), or B is part of a key.

Tradeoff:
\(\mathrm{BCNF}=\) no anomalies, but may lose some FDs
\(3 \mathrm{NF}=\) keeps all FDs, but may have some anomalies

\section*{3NF Decomposition Algorithm}

3NF_Decompose(R)
let \(\mathrm{K}=\) [all attributes that are part of some key]
find X s.t.: \(\mathrm{X}^{+}-\mathrm{X}-\mathrm{K} \neq \varnothing\) and \(\mathrm{X}^{+} \neq[\)all attributes \(]\)
if (not found) then " \(R\) is already in \(3 N F\) "
let \(\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}-\mathrm{K}\)
let \(Z=[\) all attributes \(]-(X \cup Y)\)
decompose into R1 \((\mathrm{X} \cup \mathrm{Y})\) and \(\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})\)
decompose, recursively, R1 and R2



\section*{FD's for E/R Diagrams}

Given a relation constructed from an \(\mathrm{E} / \mathrm{R}\) diagram, what is its key?
Rule 1: If the relation comes from an entity set,
the key of the relation is the set of attributes which is the key of the entity set.


\section*{FD's for E/R Diagrams}

Rule 2: If the relation comes from a many-many relationship, the key of the relation is the set of all attribute keys in the relations corresponding to the entity sets


\section*{FD's for E/R Diagrams}

Except: if there is an arrow from the relationship to E, then we don't need the key of E as part of the relation key.


Purchase(name, sname, ssn, card-no)

\section*{FD's for E/R Diagrams}

More rules:
- Many-one, one-many, one-one relationships
- Multi-way relationships
- Weak entity sets
(Try to find them yourself, or check book)

\section*{FD's for E/R Diagrams}

Say: "the CreditCard determines the Person"


Purchase(name, sname, ssn, card-no) card-no \(\rightarrow\) ssn```

