
1

1

Lecture 14:
Transactions in SQL

Wednesday, February 8, 2006

2

Overview

• Midterm review

• Chapter 8.6
• Note: this is an easy introduction to

transactions; more details when we discuss
implementations

2

3

Midterm

• Friday, 11:30, this room (in class)
– 50’

• Open book
– Notes, books, lectures, everything you want
– But no computers

4

Midterm

• SQL

• E/R Diagrams

• Functional Dependencies

• XML/Xpath/XQuery

3

5

SQL

• Know the basics: SFW, GROUP-BY,
HAVING…

• When are two queries equivalent ?
– Eliminating subqueries
– Eliminating joins
– Be aware of duplicates

• Insert/delete, especially more than one tuple
• Constraints in SQL

6

E/R Diagrams

• Good design (don’t make stupid mistakes)
• Translation to relations

– Many-many v.s. many-one relationships
• Subtleties:

– Inheritance
– Union types
– Weak entity sets

4

7

Functional Dependencies

• Know the definition of X → Y
– Does a given table satisfy X → Y ?

• Understand inference
– If A → B, B → C, does it follow that C → A ?

Why ? Why not ?
• Understand closure: X+
• Understand BCNF (no 3NF)

8

XML

• Basics in XPath and Xquery

• In what sense is XML “semistructured” ?

5

9

Midterm

How to prepare:

• Read lecture notes
• Read from the textbook
• Review the homeworks
• Try to solve exercise (book, past exams)
• Make sure you understand

10

Transactions

• Major component of database systems
• Critical for most applications; arguably

more so than SQL

• Turing awards to database researchers:
– Charles Bachman 1973
– Edgar Codd 1981 for inventing relational dbs
– Jim Gray 1998 for inventing transactions

6

11

Why Do We Need Transactions

• Concurrency control

• Recovery

12

Multiple users: single statements

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Client 1:
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

Two managers attempt to do a discount.
Will it work ?

7

13

Multiple users: multiple
statements

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What’s wrong ?

14

Protection against crashes

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 1:
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

What’s wrong ?

Crash !

8

15

Definition
• A transaction = one or more operations, which reflects a

single real-world transition
– In the real world, this happened completely or not at all

• Examples
– Transfer money between accounts
– Purchase a group of products
– Register for a class (either waitlist or allocated)

• If grouped in transactions, all problems in previous slides
disappear

16

Transactions in SQL

• In “ad-hoc” SQL:
– Default: each statement = one transaction

• In a program:
START TRANSACTION
[SQL statements]
COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

9

17

Revised Code

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’
COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’
COMMIT

Client 1: START TRANSACTION
UPDATE Product
SET Price = Price – 1.99
WHERE pname = ‘Gizmo’
COMMIT

Client 2: START TRANSACTION
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’
COMMIT

Now it works like a charm

18

Transaction Properties
ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
• Isolated

– Effect of txns is the same as txns running one after
another (ie looks like batch mode)

• Durable
– Once a txn has committed, its effects remain in the

database

10

19

ACID: Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

• That is, transaction’s activities are all or
nothing

20

ACID: Consistency

• The state of the tables is restricted by integrity
constraints
– Account number is unique
– Stock amount can’t be negative
– Sum of debits and of credits is 0

• Constraints may be explicit or implicit
• How consistency is achieved:

– Programmer makes sure a txn takes a consistent state to
a consistent state

– The system makes sure that the tnx is atomic

11

21

ACID: Isolation

• A transaction executes concurrently with
other transaction

• Isolation: the effect is as if each transaction
executes in isolation of the others

22

ACID: Durability

• The effect of a transaction must continue to
exists after the transaction, or the whole
program has terminated

• Means: write data to disk

12

23

ROLLBACK

• If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

• This causes the system to “abort” the
transaction
– The database returns to the state without any of

the previous changes made by activity of the
transaction

24

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)
• Explicit in program, when app program

finds a problem
– e.g. when qty on hand < qty being sold

• System-initiated abort
– System crash
– Housekeeping

• e.g. due to timeouts

13

25

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

Client 1: START TRANSACTION
INSERT INTO SmallProduct(name, price)

SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

COMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION
SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct
COMMIT

Makes it
faster

26

Famous anomalies
• Dirty read

– T reads data written by T’ while T’ is running
– Then T’ aborts
–

• Lost update
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

• Inconsistent read
– One task T sees some but not all changes made by T’

14

27

Isolation Levels in SQL
1. “Dirty reads”

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions (default):
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

28

Isolation Level: Dirty Reads
function AllocateSeat(%request)

SET ISOLATION LEVEL READ UNCOMMITED

START TRANSACTION

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

If (x == 1) /* occupied */ ROLLBACK

UPDATE Seat
SET occupied = 1
WHERE Seat.number = %request

COMMIT

function AllocateSeat(%request)

SET ISOLATION LEVEL READ UNCOMMITED

START TRANSACTION

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

If (x == 1) /* occupied */ ROLLBACK

UPDATE Seat
SET occupied = 1
WHERE Seat.number = %request

COMMIT

Plane seat
allocation

What can go
wrong ?

What can go
wrong if only
the function
AllocateSeat
modifies Seat ?

15

29

function TransferMoney(%amount, %acc1, %acc2)

START TRANSACTION

Let x = SELECT Account.balance
FROM Account
WHERE Account.number = %acc1

If (x < %amount) ROLLBACK

UPDATE Account
SET balance = balance+%amount
WHERE Account.number = %acc2

UPDATE Account
SET balance = balance-%amount
WHERE Account.number = %acc1

COMMIT

function TransferMoney(%amount, %acc1, %acc2)

START TRANSACTION

Let x = SELECT Account.balance
FROM Account
WHERE Account.number = %acc1

If (x < %amount) ROLLBACK

UPDATE Account
SET balance = balance+%amount
WHERE Account.number = %acc2

UPDATE Account
SET balance = balance-%amount
WHERE Account.number = %acc1

COMMIT

Are dirty reads
OK here ?

What if we
switch the
two updates ?

30

Isolation Level: Read Committed

SET ISOLATION LEVEL READ COMMITED

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* More stuff here */

Let y = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* we may have x ≠ y ! */

SET ISOLATION LEVEL READ COMMITED

Let x = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* More stuff here */

Let y = SELECT Seat.occupied
FROM Seat
WHERE Seat.number = %request

/* we may have x ≠ y ! */

Stronger than
READ UNCOMMITTED

It is possible
to read twice,
and get different
values

16

31

Isolation Level: Repeatable Read

SET ISOLATION LEVEL REPEATABLE READ

Let x = SELECT Account.amount
FROM Account
WHERE Account.number = ‘555555’

/* More stuff here */

Let y = SELECT Account.amount
FROM Account
WHERE Account.number = ‘777777’

/* we may have a wrong x+y ! */

SET ISOLATION LEVEL REPEATABLE READ

Let x = SELECT Account.amount
FROM Account
WHERE Account.number = ‘555555’

/* More stuff here */

Let y = SELECT Account.amount
FROM Account
WHERE Account.number = ‘777777’

/* we may have a wrong x+y ! */

Stronger than
READ COMMITTED

May see incompatible
values:

another txn transfers
from acc. 55555 to
77777

32

Isolation Level: Serializable

SET ISOLATION LEVEL SERIALIZABLE

. . . .

SET ISOLATION LEVEL SERIALIZABLE

. . . .

Strongest level

Default

