
1

1

Lecture 15:
Data Storage, Recovery

Monday, February 13, 2006

2

Outline

• Disks 11.3
– Recommended reading: entire chapter 11

• Recovery using undo logging 17.2

2

3

The Mechanics of Disk
Mechanical characteristics:
• Rotation speed (5400RPM)
• Number of platters (1-30)
• Number of tracks (<=10000)
• Number of bytes/track(105)

Platters

Spindle
Disk head

Arm movement

Arm assembly

Tracks

Sector

Cylinder

Unit of read or write:
disk block

Once in memory:
page

Typically: 4k or 8k or 16k

4

Disk Access Characteristics
• Disk latency = time between when command is issued and

when data is in memory

• Disk latency = seek time + rotational latency
– Seek time = time for the head to reach cylinder

• 10ms – 40ms
– Rotational latency = time for the sector to rotate

• Rotation time = 10ms
• Average latency = 10ms/2

• Transfer time = typically 40MB/s
• Disks read/write one block at a time

3

5

RAID
Several disks that work in parallel
• Redundancy: use parity to recover from disk failure
• Speed: read from several disks at once

Various configurations (called levels):
• RAID 1 = mirror
• RAID 4 = n disks + 1 parity disk
• RAID 5 = n+1 disks, assign parity blocks round robin
• RAID 6 = “Hamming codes”

6

Buffer Management in a DBMS

• Data must be in RAM for DBMS to operate on it!
• Table of <frame#, pageid> pairs is maintained

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

READ
WRITE

INPUT
OUTUPT

4

7

Buffer Manager

Needs to decide on page replacement policy

• LRU
• Clock algorithm

Both work well in OS, but not always in DB

Enables the higher levels of the DBMS to assume that the
needed data is in main memory.

8

Least Recently Used (LRU)

• Order pages by the time of last accessed
• Always replace the least recently accessed

P5, P2, P8, P4, P1, P9, P6, P3, P7P5, P2, P8, P4, P1, P9, P6, P3, P7

Access P6

P6, P5, P2, P8, P4, P1, P9, P3, P7P6, P5, P2, P8, P4, P1, P9, P3, P7

LRU is expensive (why ?); the clock algorithm is good approx

5

9

Buffer Manager

Why not use the Operating System for the task??

- DBMS may be able to anticipate access patterns
- Hence, may also be able to perform prefetching
-DBMS needs the ability to force pages to disk,
for recovery purposes

- need fine grained control for transactions

10

Transaction Management

Two parts:

• Recovery from crashes: ACID
• Concurrency control: ACID

Both operate on the buffer pool

6

11

Recovery

From which of the events below can a
database actually recover ?

• Wrong data entry
• Disk failure
• Fire / earthquake / bankrupcy / ….
• Systems crashes

12

Recovery
PreventionType of Crash

DATABASE
RECOVERY

System failures:
e.g. power

Buy insurance,
Change jobs…

Fire, theft,
bankruptcy…

Redundancy:
e.g. RAID, archiveDisk crashes

Constraints and
Data cleaningWrong data entry

Most
frequent

7

13

System Failures

• Each transaction has internal state
• When system crashes, internal state is lost

– Don’t know which parts executed and which
didn’t

• Remedy: use a log
– A file that records every single action of the

transaction

14

Transactions

• Assumption: the database is composed of
elements
– Usually 1 element = 1 block
– Can be smaller (=1 record) or larger (=1

relation)
• Assumption: each transaction reads/writes

some elements

8

15

Primitive Operations of
Transactions

• READ(X,t)
– copy element X to transaction local variable t

• WRITE(X,t)
– copy transaction local variable t to element X

• INPUT(X)
– read element X to memory buffer

• OUTPUT(X)
– write element X to disk

16

Example
START TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

START TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

Atomicity:
BOTH A and B
are multiplied by 2

9

17

8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Buffer pool DiskTransaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

18

8881616INPUT(B)

888INPUT(A)

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem AtAction

Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity

10

19

The Log

• An append-only file containing log records
• Note: multiple transactions run

concurrently, log records are interleaved
• After a system crash, use log to:

– Redo some transaction that didn’t commit
– Undo other transactions that didn’t commit

• Three kinds of logs: undo, redo, undo/redo

20

Undo Logging
Log records
• <START T>

– transaction T has begun
• <COMMIT T>

– T has committed
• <ABORT T>

– T has aborted
• <T,X,v>

– T has updated element X, and its old value was v

11

21

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

22

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !

WHAT DO WE DO ?

12

23

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

Crash !
WHAT DO WE DO ?

24

After Crash

• In the first example:
– We UNDO both changes: A=8, B=8
– The transaction is atomic, since none of its actions has been

executed

• In the second example
– We don’t undo anything
– The transaction is atomic, since both it’s actions have been

executed

13

25

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be
written to disk before <COMMIT T>

• Hence: OUTPUTs are done early, before
the transaction commits

26

8881616INPUT(B)

888INPUT(A)

<COMMIT T>COMMIT

<START T>

<T,B,8>

<T,A,8>

Log

1616161616OUTPUT(B)

816161616OUTPUT(A)

88161616WRITE(B,t)

8881616t:=t*2

888168READ(B,t)

8

8

8

Disk B

81616WRITE(A,t)

8816t:=t*2

888READ(A,t)

Disk AMem BMem ATAction

14

27

Recovery with Undo Log

After system’s crash, run recovery manager
• Idea 1. Decide for each transaction T

whether it is completed or not
– <START T>….<COMMIT T>…. = yes
– <START T>….<ABORT T>……. = yes
– <START T>……………………… = no

• Idea 2. Undo all modifications by
incomplete transactions

28

Recovery with Undo Log

Recovery manager:
• Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed

then write X=v to disk
else ignore

<START T>: ignore

15

29

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1 in class:
Which updates are
undone ?

Question 2 in class:
How far back
do we need to
read in the log ?

crash

30

Recovery with Undo Log

• Note: all undo commands are
idempotent
– If we perform them a second time, no

harm is done
– E.g. if there is a system crash during

recovery, simply restart recovery from
scratch

16

31

Recovery with Undo Log

When do we stop reading the log ?
• We cannot stop until we reach the

beginning of the log file
• This is impractical

Instead: use checkpointing

