
1

1

Lecture 20: Indexes

Monday, February 27, 2006

2

Outline

• Data storage
• Index structures (13.1, 13.2)
• B-trees (13.3)

2

3

Data Storage

• For persistence, data is stored on disk
• Basic abstraction

– Collection of records or file
– Typically, 1 relation = 1 file

• A file consists of one or more pages
– One page corresponds to one block
– Page is unit of info read/written to/from disk

• How to organize records in file?

4

Heap File

2170

18 …30

1940

2020

1860

1980

2250

2110

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

3

5

Heap File Example

• 10,000 students
• 10 student records per page
• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Must read on average 500 pages
• Find all students older than 20

– Must read all 1,000 pages
• Can we do better?

6

Sequential File

2020

21 …10

1940

1830

1860

2250

1980

2170

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

4

7

Sequential File Example

• Total number of pages: 1,000 pages
• Find student whose sid is 80

– Could do binary search, read log2(1,000) ≈ 10 pages
• Find all students older than 20

– Must still read all 1,000 pages
• Can we do even better?

Indexes
• An index on a file speeds up selections on

the search key fields for the index.
– Any subset of the fields of a relation can be the

search key for an index on the relation.
– Search key is not the same as key (minimal set of

fields that uniquely identify a record in a relation).
• An index contains a collection of data entries,

and supports efficient retrieval of all data
entries with a given key value k.

5

9

Primary Index
• File is sorted on the index attribute
• Dense index: sequence of (key,pointer) pairs

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

1 data entry

1 page

Index File Data File

10

Primary Index

• Sparse index

70

50

30

10

150

130

110

90

20

10

40

30

60

50

80

70

6

11

Primary Index Example

• Let’s assume all pages of index fit in memory
• Find student whose sid is 80

– Index (dense or sparse) points directly to the page
– Only need to read 1 page from disk.

• Find all students older than 20
– Must still read all 1,000 pages.

• How can we make both queries fast?

12

Secondary Indexes

• To index other attributes than primary key
• Always dense (why ?)

19

19

18

18

22

21

21

20

2020

2110

1940

1830

1860

2250

1980

2170

7

Clustered vs. Unclustered
Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

14

Clustered/Unclustered

• Primary index = usually clustered
• Secondary indexes = usually unclustered

8

15

Secondary Indexes

• Applications
– Index other attributes than primary key
– Index unsorted files (heap files)
– Index clustered data

16

Index Classification Summary
• Primary/secondary

– Primary = may reorder data according to index
– Secondary = cannot reorder data

• Dense/sparse
– Dense = every key in the data appears in the index
– Sparse = the index contains only some keys

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in

data
• B+ tree / Hash table / …

9

17

Large Indexes

• What if index does not fit in memory?
• Would like to index the index itself
• How many index levels do we need?
• Can we create them automatically?

Yes!
• Can do something even more powerful!

18

B+ Trees

• Search trees
• Idea in B Trees

– Make 1 node = 1 page (= 1 block)
• Idea in B+ Trees

– Make leaves into a linked list (range
queries are easier)

10

19

• Parameter d = the degree
• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

Data records

20

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

11

21

Searching a B+ Tree

• Exact key values:
– Start at the root
– Proceed down, to the leaf

• Range queries:
– Find lowest bound as above
– Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
and age <= 30

Select name
From Student
Where 20 <= age
and age <= 30

22

B+ Tree Design

• How large d ?
• Example:

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

12

B+ Trees in Practice
• Typical order: 100. Typical fill-factor: 67%.

– average fanout = 133
• Typical capacities

– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

24

Insertion in a B+ Tree
Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, also keep K3 in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
K3

parent

13

25

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

26

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

14

27

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

28

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

15

29

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

30

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

16

31

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

32

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

17

33

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

34

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

18

35

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

36

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to merge nodes

50

50

19

37

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

38

Summary on B+ Trees

• Default index structure on most DBMS
• Very effective at answering ‘point’ queries:

productName = ‘gizmo’
• Effective for range queries:

50 < price AND price < 100
• Less effective for multirange:

50 < price < 100 AND 2 < quant < 20

