Lecture 21: Hash Tables
and Query Execution

Friday, March 3, 2006

Qutline

» Hash-tables (13.4)
* Query execution: 15.1 - 15.5

Hash Tables

» Secondary storage hash tables are much like
main memory ones

 Recall basics:
— There are n buckets
— A hash function f(k) maps a key k to {0, 1, ..., n-1}
— Store in bucket f(k) a pointer to record with key k

» Secondary storage: bucket = block, use
overflow blocks when needed

Hash Table Example

Assume 1 bucket (block) stores 2 keys +
pointers

* h(e)=0 R
* h(b)=h(f)=1 T
* h(g)=2 , s
* h(a)=h(c)=3

3 P]

Here: h(x) = x mod 4 I

Searching in a Hash Table

Search for a;

« Compute h(a)=3

* Read bucket 3 O

» 1 disk access 1 f _____________
2 B
3 e]

Insertion in Hash Table

 Place in right bucket, if space
e E.g. h(d)=2

0]

D
f

2 9]
d

3 P]
C

Insertion in Hash Table

Create overflow block, if no space

E.g. h(k)=1
o]
D En
f
2 19
d
Moreover- 5 []
flow blocks c
may be needed 7

Hash Table Performance

Excellent, if no overflow blocks

Degrades considerably when number of
keys exceeds the number of buckets (l.e.
many overflow blocks).

Extensible Hash Table

 Allows has table to grow, to avoid
performance degradation

e Assume a hash function h that returns
numbers in {0, ..., 2k-1}

e Start with n = 2' << 2k only look at first i
most significant bits

Extensible Hash Table

e E.g.i=1, n=2=2, k=4
/ 0010 1]

0
1 — 1(011) ﬂ

\ _______________
» Note: we only look at the first bit (0 or 1)

10

Insertion in Extensible Hash

Table
e |nsert 1110
i=1 /_0_(9@ __________ 1]
0
1 — 1(011) ﬂ
T—Jia]

11

Insertion in Extensible Hash
Table

* Now insert 1010

i=1 /_0_(9;@ __________ 1]

1 — 1(011) ﬂ

[100 |
» Need to extend table, split blocks
* | becomes 2

12

Insertion in Extensible Hash

00
01
10
11

Table

2 /_0_(9@ __________ 1
[oan | 2]
10(10)
B 2]

13

Insertion in Extensible Hash

Table

* Now insert 0000, then 0101

00
01
10
11

» Need to split block

7

0010) | H
0(000), 0(101)
N 2]
10(10)

11(10) 2]

14

Insertion in Extensible Hash

Table

o After splitting the block

00
01
10
11

-

o000)] 2]
00(00)
o0y] 2]
00y] 2]
10(10)
11(10) 2]

15

Extensible Hash Table

* How many buckets (blocks) do we need to
touch after an insertion ?

* How many entries in the hash table do we
need to touch after an insertion ?

16

Performance Extensible Hash
Table

» No overflow blocks: access always one read

 BUT:
— Extensions can be costly and disruptive

— After an extension table may no longer fit in
memory

17

Linear Hash Table

Idea: extend only one entry at a time
Problem: n=no longer a power of 2
Let i be such that 2! <=n < 2*!

After computing h(K), use last i bits:

— If last i bits represent a number > n, change msb
from 1 to O (get a number <=n)

18

Linear Hash Table Example

e N=3

00
01
10

(01)00

i=2 (11)00
4 (01)11 BITFLIP

19

Linear Hash Table Example

 Insert 1000: overflow blocks...

00

-

01

10

(opoo | End O
(11)00

oy] |

(10)10 |]

20

10

Linear Hash Tables

» Extension: independent on overflow blocks

» Extend n:=n+1 when average number of
records per block exceeds (say) 80%

21

Linear Hash Table Extension

e From n=3to n=4

| opoo] o opoo] |
i=2 / (11)00 (11)00
(0111 | |
P _ oo] -
01 =2 J?\
(10)10 |] T
10 | / (1010]] u
00 A
01 =
 Only need to touch 10 /-@}ll}---ng----J

one block (which one ?) n=11

11

Linear Hash Table Extension

 From n=3 to n=4 finished

(01)00

e Extension from n=4

to n=5 (new bit) i=2 / ---------------

« Needtotouchevery oo 7/ /[

ingle block (why ?) 01
single block (why ?) 0 /_(_0})_1_1 __________

11 23

Summary on Hash Tables

o Alternative index structures:
— Simpler than B+ trees
— Faster then B+ trees (when not full)
— Degrade rapidly (when full)

» Used intensively during query processing

24

NN

DBMS Architecture

How does a SQL engine work ?
» SQL query — relational algebra plan

 Relational algebra plan — Optimized plan
» Execute each operator of the plan

25

Architecture of a Database Engine

SQL query

i Logical
ol setect Logca P'a
optimization |
[Select Physical Plan]
i Physical
[Query Execution] plan

26

13

Relational Algebra

» Formalism for creating new relations from
existing ones

* Its place in the big picture:

Declartive
query Algebra Implementation
language
SQL Relational algebra
relational calculus Relational bag algebra 27

Relational Algebra

» Five operators:
— Union: u
— Difference: -
— Selection: o
— Projection: T1
— Cartesian Product: x
 Derived or auxiliary operators:
— Intersection, complement
— Joins (natural,equi-join, theta join, semi-join)
— Renaming: p

28

14

1. Union and 2. Difference

R1UR2

Example:
— ActiveEmployees U RetiredEmployees

R1-R2
Example:
— AllIEmployees -- RetiredEmployees

29

What about intersection ?

It is a derived operator
R1NR2=R1-(R1-R2)
Also expressed as a join (will see later)

Example
— UnionizedEmployees n RetiredEmployees

30

15

3. Selection

Notation: c,(R)
Examples

~ Osatary > 40000 (E mp I Oyee)
- Gname=“Smith" (Employee)

The conditionccanbe =, <, <, >, >, <>

Returns all tuples which satisfy a condition

31

SSN Name Salary
1234545 John 200000
5423341 Smith 600000
4352342 Fred 500000

cSSaIary > 40000 (Em p I Oyee)

SSN Name Salary
5423341 Smith 600000
4352342 Fred 500000

32

4. Projection

» Eliminates columns, then removes duplicates

» Example: project social-security number and names:

= I son, name (Employee)

— Output schema: Answer(SSN, Name)

33

SSN

Name

Salary

1234545

John

200000

5423341

John

600000

4352342

John

200000

I Name,Salary (Employee)

Name

Salary

John

20000

John

60000

34

17

5. Cartesian Product

Each tuple in R1 with each tuple in R2
Notation: R1 x R2
Example:

— Employee x Dependents

express joins

Very rare in practice; mainly used to

35

Name

SSN

EmpSSN Dname

John

9999999999

9999999999 |Emily

Tony

rrreereri

rrrrirrir? | Joe

Name

SSN

EmpSSN Dname

John

9999999999

9999999999 |Emily

Tony

rorreeriee’

rrrrerriry | Joe

John

9999999999

9999999999 |Emily

Tony

e

rrrerrrri? | Joe

36

18

Relational Algebra

» Five operators:
— Union: u
— Difference: -
— Selection: ¢
— Projection: T1
— Cartesian Product: x
 Derived or auxiliary operators:
— Intersection, complement
— Joins (natural,equi-join, theta join, semi-join)
— Renaming: p

37

Renaming

» Changes the schema, not the instance
» Notation: pg; g, (R)
» Example:

— PLastName, SocSocNo (Employee)
— Output schema:
Answer(LastName, SocSocNo)

38

19

Renaming Example

Employee

Name SSN

John 999999999
Tony (77777777

p LastName, SocSocNo (E m ployee)

LastName SocSocNo
John 999999999
Tony 177777777

39

20

