Lecture 22:
Query Execution
Monday, March 6, 2006

Outline

- Query execution: 15.1 - 15.5

Architecture of a Database Engine

Logical Algebra Operators

- Union, intersection, difference
- Selection σ
- Projection Π
- Join $|x|$
- Duplicate elimination δ
- Grouping γ
- Sorting τ

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) >100

T3(city, c)

T1, T2, T3 = temporary tables

Logical Query Plan

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND
P.city=‘seattle' AND
Q.phone > '5430000'

Purchase(buyer, city) Person(name, phone)

Physical Query Plan

SELECT S.buyer
 FROM Purchase P, Person Q
 WHERE P.buyer=Q.name AND
 Q.city='seattle' AND
 Q.phone > '5430000'

Query Plan:

- logical tree
- implementation
choice at every node
- scheduling of operations.

Some operators are from relational algebra, and others (e.g., scan) are not.

Question in Class

Logical operator:
Product(pname, cname) $|\times|$ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Question in Class

Product(pname, cname) $|\mathbf{x}|$ Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is in main memory?

- Nested loop join time $=$
time $=$
time $=$
- Hash join

Cost Parameters

The cost of an operation = total number of I/Os
result assumed to be delivered in main memory Cost parameters:

- $B(R)=$ number of blocks for relation R
- $T(R)=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ number of distinct values of attribute a
- $M=$ size of main memory buffer pool, in blocks

Cost Parameters

- Clustered table R:
- Blocks consists only of records from this table
$-\mathrm{B}(\mathrm{R}) \ll \mathrm{T}(\mathrm{R})$
- Unclustered table R:
- Its records are placed on blocks with other tables
$-\mathrm{B}(\mathrm{R}) \approx \mathrm{T}(\mathrm{R})$
- When a is a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})=\mathrm{T}(\mathrm{R})$
- When a is not a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})$

Selection and Projection

Selection $\sigma(\mathrm{R})$, projection $\Pi(\mathrm{R})$

- Both are tuple-at-a-time algorithms
- Cost: B(R)

Main Memory Hash Join

Hash join: $\mathrm{R}|\mathrm{x}| \mathrm{S}$

- Scan S, build buckets in main memory
- Then scan R and join
- Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- Assumption: $B(S)<=M$

Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Hash table in main memory
- Cost: B(R)
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}$

Grouping

Grouping:
Product(name, department, quantity)
$\gamma_{\text {department, sum(quantity) }}$ (Product) \rightarrow
Answer(department, sum)

Main memory hash table
Question: How ?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$
for each tuple r in R do for each tuple s in S do if r and s join then output (r, s)
- Cost: $T(R) B(S)$ when S is clustered
- Cost: $T(R) T(S)$ when S is unclustered

Nested Loop Joins

- We can be much more clever
- Question: how would you compute the join in the following cases? What is the cost?
$-B(R)=1000, B(S)=2, M=4$
$-B(R)=1000, B(S)=3, M=4$
$-B(R)=1000, B(S)=6, M=4$

Nested Loop Joins

- Block-based Nested Loop Join
for each (M-2) blocks bs of S do for each block br of R do for each tuple s in bs
for each tuple r in $b r$ do if " r and s join" then output (r, s)

Nested Loop Joins

Nested Loop Joins

- Block-based Nested Loop Join
- Cost:
- Read S once: cost B(S)
- Outer loop runs $B(S) /(M-2)$ times, and each time need to read R : costs $\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Total cost: B(S) + B(S)B(R)/(M-2)
- Notice: it is better to iterate over the smaller relation first
- $\mathrm{R}|\mathrm{x}| \mathrm{S}: \mathrm{R}=$ outer relation, $\mathrm{S}=$ inner relation

Partitioned Hash Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory?
- Yes if $B(R) / M<=M$, i.e. $B(R)<=M^{2}$

Duplicate Elimination

- Recall: $\delta(\mathrm{R})=$ duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Grouping

- Recall: $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=M^{2}$

Partitioned Hash Join

R |x| S

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}))<=\mathrm{M}^{2}$

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $\mathrm{B}<\mathrm{M}^{2}$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If $\mathrm{B}<=\mathrm{M}^{2}$ then we are done

Cost of External Merge Sort

- Read + write + read $=3 B(R)$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how ?
- Cost $=3 B(R)$
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}^{2}$

Grouping

Grouping: $\gamma_{\mathrm{a}, \text { sum(b) }}(\mathrm{R})$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Merge-Join

Join R |x| S

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Two-Pass Algorithms Based on Sorting

Join R $|x| S$

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S})$
- Assumption: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})<=\mathrm{M}^{2}$

Index Based Selection

- Selection on equality: $\sigma_{a=v}(R)$
- Clustered index on $\mathrm{a}: \operatorname{cost} \mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- Unclustered index on $\mathrm{a}: \operatorname{cost} \mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$

Index Based Selection

- Example:

$$
\begin{aligned}
& \mathrm{B}(\mathrm{R})=2000 \\
& \mathrm{~T}(\mathrm{R})=100,000
\end{aligned}
$$

$$
\text { cost of } \sigma_{a=v}(\mathrm{R})=\text { ? }
$$

- Table scan (assumming R is ciustered):
$-\mathrm{B}(\mathrm{R})=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 I / O s$
- If index is unclustered: $T(R) / V(R, a)=5,000 I / O s$
- Lesson: don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Index Based Join

- $\mathrm{R} \bowtie \mathrm{S}$
- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Assume R is clustered. Cost:
- If index is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Index Based Join

- Assume both R and S have a sorted index ($\mathrm{B}+$ tree) on the join attribute
- Then perform a merge join
- called zig-zag join
- Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: $3 \mathrm{~B}(\mathrm{R})+3 \mathrm{~B}(\mathrm{~S}$
$-\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})<=\mathrm{M}^{2}$
- Index Join: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$

