Lecture 23: Query Execution

Wednesday, March 8, 2006

Outline

- Query optimization: algebraic laws 16.2

Example

Product(pname, maker), Company(cname, city)

Select Product.pname
From Product, Company
Where Product.maker=Company.cname and Company.city = "Seattle"

- How do we execute this query?

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname
Unclustered index: Product.maker, Company.city

Logical Plan:

Physical plans 2a and 2 b :


```
Plan 1: \(\mathrm{T}(\) Company \() / \mathrm{V}(\) Company,city \() \times\) T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)
```


Which one is better ??

It depends on the data !!

Example

$\mathrm{T}($ Company $)=5,000 \quad \mathrm{~B}($ Company $)=500 \quad \mathrm{M}=100$
$\mathrm{T}($ Product $)=100,000 \quad B($ Product $)=1,000$

We may assume $\mathrm{V}($ Product, maker) $\approx \mathrm{T}$ (Company) (why ?)

- Case $1: \mathrm{V}($ Company, city $) \approx \mathrm{T}($ Company $)$
$\mathrm{V}($ Company, city $)=2,000$
- Case 2: V(Company, city) $\ll \mathrm{T}$ (Company)
$\mathrm{V}($ Company,city $)=20$

Which Plan is Best?

Plan 1: $\mathrm{T}($ Company $) / \mathrm{V}($ Company,city $) \times \mathrm{T}($ Product $) / \mathrm{V}($ Product,maker $)$ Plan 2a: B(Company) + 3B(Product)
Plan 2b: B (Company) +T (Product)

Case 1:

Case 2:

Lessons

- Need to consider several physical plan
- even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

Query Optimzation

- Have a SQL query Q
- Create a plan P
- Find equivalent plans $\mathrm{P}=\mathrm{P}^{\prime}=\mathrm{P}^{\prime}=\ldots$
- Choose the "cheapest".

Logical Query Plan

SELECT P.buyer
 FROM Purchase P, Person Q WHERE P.buyer=Q.name AND
 P.city='seattle' AND
 Q.phone > '5430000'

In class:
find a "better" plan P'

Purchasse(buyer, city)
Person(name, phone)
$\mathrm{P}=\quad \Pi_{\text {buyer }}$
$\sigma_{\text {City }}=$ 'seattle' \wedge phone>'5430000'
\bowtie
Buyer=name

Purchase

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws

- Commutative and Associative Laws $\mathrm{R} \cup \mathrm{S}=\mathrm{S} \cup \mathrm{R}, \mathrm{R} \cup(\mathrm{S} \cup \mathrm{T})=(\mathrm{R} \cup \mathrm{S}) \cup \mathrm{T}$ $R|x| S=S|x| R, R|x|(S|x| T)=(R|x| S)|x| T$ $R|x| S=S|x| R, R|x|(S|x| T)=(R|x| S)|x| T$
- Distributive Laws

$$
R|x|(S \cup T)=(R|x| S) \cup(R|x| T)
$$

Algebraic Laws

- Laws involving selection:

$$
\begin{aligned}
& \sigma_{\mathrm{CAND}^{\prime}}(\mathrm{R})=\sigma_{\mathrm{C}}\left(\sigma_{\mathrm{C}^{\prime}}(\mathrm{R})\right)=\sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \cap \sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \\
& \sigma_{\mathrm{CORC}} \mathrm{C}^{\prime}(\mathrm{R})=\sigma_{\mathrm{C}}(\mathrm{R}) \cup \sigma_{\mathrm{C}^{\prime}}(\mathrm{R}) \\
& \sigma_{\mathrm{C}}(\mathrm{R}|\times| \mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})|\times| \mathrm{S}
\end{aligned}
$$

- When C involves only attributes of R

$$
\begin{aligned}
& \sigma_{\mathrm{C}}(\mathrm{R}-\mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})-\mathrm{S} \\
& \sigma_{\mathrm{C}}(\mathrm{R} \cup \mathrm{~S})=\sigma_{\mathrm{C}}(\mathrm{R}) \cup \sigma_{\mathrm{C}}(\mathrm{~S}) \\
& \sigma_{\mathrm{C}}(\mathrm{R}|\times| \mathrm{S})=\sigma_{\mathrm{C}}(\mathrm{R})|\times| \mathrm{S}
\end{aligned}
$$

Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)

$$
\begin{align*}
& \sigma_{\mathrm{F}=3}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{~S}\right)= \\
& \sigma_{\mathrm{A}=5 \mathrm{ANDG} \mathrm{G}=9}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{~S}\right)=
\end{align*} ?
$$

Algebraic Laws

- Laws involving projections

$$
\begin{aligned}
\Pi_{\mathrm{M}}(\mathrm{R}|\times| \mathrm{S}) & =\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R})|\times| \Pi_{\mathrm{Q}}(\mathrm{~S})\right) \\
\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{N}}(\mathrm{R})\right) & =\Pi_{\mathrm{M}, \mathrm{~N}}(\mathrm{R})
\end{aligned}
$$

- Example R(A,B,C,D), S(E, F, G)

$$
\Pi_{\mathrm{A}, \mathrm{~B}, \mathrm{G}}\left(\mathrm{R}|\times|_{\mathrm{D}=\mathrm{E}} \mathrm{~S}\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R})|\times|_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)
$$

Algebraic Laws

- Laws involving grouping and aggregation:

$$
\delta\left(\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R})\right)=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{~B})}(\mathrm{R})
$$

$\gamma_{A, \operatorname{agg}(B)}(\delta(\mathrm{R}))=\gamma_{A, \operatorname{agg}(\mathrm{~B})}(\mathrm{R})$ if agg is "duplicate insensitive"

- Which of the following are "duplicate insensitive"? sum, count, avg, min, max

$$
\begin{aligned}
& \gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{~A}, \mathrm{~B})|\times|_{\mathrm{B}=\mathrm{C}} \mathrm{~S}(\mathrm{C}, \mathrm{D})\right)= \\
& \quad \gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{~A}, \mathrm{~B})|\times|_{\mathrm{B}=\mathrm{C}}\left(\gamma_{\mathrm{C}, \operatorname{agg}(\mathrm{D})} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)\right)
\end{aligned}
$$

