
1

Lecture 04: SQL

Monday, April 2, 2007

2

Outline

• The Project

• Nulls (6.1.6)

• Outer joins (6.3.8)

• Database Modifications (6.5)

3

NULLS in SQL

• Whenever we don’t have a value, we can put a NULL

• Can mean many things:
– Value does not exists

– Value exists but is unknown

– Value not applicable

– Etc.

• The schema specifies for each attribute if can be null
(nullable attribute) or not

• How does SQL cope with tables that have NULLs ?

4

Null Values

• If x= NULL then 4*(3-x)/7 is still NULL

• If x= NULL then x=“Joe” is UNKNOWN

• In SQL there are three boolean values:
FALSE = 0

UNKNOWN = 0.5

TRUE = 1

5

Null Values

• C1 AND C2 = min(C1, C2)

• C1 OR C2 = max(C1, C2)

• NOT C1 = 1 – C1

Rule in SQL: include only tuples that yield TRUE

SELECT *
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

SELECT*
FROM Person
WHERE (age < 25) AND

(height > 6 OR weight > 190)

E.g.
age=20
heigth=NULL
weight=200

6

Null Values

Unexpected behavior:

Some Persons are not included !

SELECT *
FROM Person
WHERE age < 25 OR age >= 25

SELECT*
FROM Person
WHERE age < 25 OR age >= 25

7

Null Values

Can test for NULL explicitly:
– x IS NULL
– x IS NOT NULL

Now it includes all Persons

SELECT *
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

SELECT*
FROM Person
WHERE age < 25 OR age >= 25 OR age IS NULL

8

Outerjoins
Explicit joins in SQL = “inner joins”:

Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product JOIN Purchase ON

Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product JOINPurchase ON

Product.name = Purchase.prodName

SELECT Product.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

Same as:

But Products that never sold will be lost !

9

Outerjoins

Left outer joins in SQL:
Product(name, category)
Purchase(prodName, store)

SELECT Product.name, Purchase.store
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName

SELECTProduct.name, Purchase.store
FROM Product LEFT OUTER JOINPurchase ON

Product.name = Purchase.prodName

10

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

NULLOneClick

WizCamera

RitzCamera

WizGizmo

StoreName

Product Purchase

11

Application

Compute, for each product, the total number of sales in ‘September’
Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

SELECTProduct.name, count(*)
FROM Product, Purchase
WHERE Product.name = Purchase.prodName

and Purchase.month = ‘September’
GROUP BY Product.name

What’s wrong ?

12

Application

Compute, for each product, the total number of sales in ‘September’
Product(name, category)
Purchase(prodName, month, store)

SELECT Product.name, count(*)
FROM Product LEFT OUTER JOIN Purchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

SELECTProduct.name, count(*)
FROM Product LEFT OUTER JOINPurchase ON

Product.name = Purchase.prodName
and Purchase.month = ‘September’

GROUP BY Product.name

Now we also get the products who sold in 0 quantity

13

Outer Joins

• Left outer join:
– Include the left tuple even if there’s no match

• Right outer join:
– Include the right tuple even if there’s no match

• Full outer join:
– Include the both left and right tuples even if there’s no

match

14

Modifying the Database

Three kinds of modifications

• Insertions

• Deletions

• Updates

Sometimes they are all called “updates”

15

Insertions
General form:

Missing attribute → NULL.
May drop attribute names if give them in order.

INSERT INTO R(A1,…., An) VALUES (v1,…., vn)INSERT INTO R(A1,…., An) VALUES (v1,…., vn)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

INSERT INTO Purchase(buyer, seller, product, store)
VALUES (‘Joe’, ‘Fred’, ‘wakeup-clock-espresso-machine’,

‘The Sharper Image’)

Example: Insert a new purchase to the database:

16

Insertions

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

INSERT INTO PRODUCT(name)

SELECT DISTINCT Purchase.product
FROM Purchase
WHERE Purchase.date > “10/26/01”

The query replaces the VALUES keyword.
Here we insert many tuples into PRODUCT

17

Insertion: an Example

prodNameis foreign key in Product.name

Suppose database got corrupted and we need to fix it:

gadgets100gizmo

categorylistPricename

225Smithcamera

80Smithgizmo

200Johncamera

pricebuyerNameprodName

Task: insert in Productall prodNamesfrom Purchase

Product

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Product(name, listPrice, category)
Purchase(prodName, buyerName, price)

Purchase

18

Insertion: an Example

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name)

SELECT DISTINCT prodName
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

--camera

Gadgets100gizmo

categorylistPricename

19

Insertion: an Example

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

INSERT INTO Product(name, listPrice)

SELECT DISTINCT prodName, price
FROM Purchase
WHERE prodName NOT IN (SELECT name FROM Product)

-225 ??camera ??

-200camera

Gadgets100gizmo

categorylistPricename

Depends on the implementation

20

Deletions

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

DELETE FROM PURCHASE

WHERE seller = ‘Joe’ AND
product = ‘Brooklyn Bridge’

Factoid about SQL: there is no way to delete only a single

occurrence of a tuple that appears twice

in a relation.

Example:

21

Updates

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECT product
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

UPDATE PRODUCT
SET price = price/2
WHERE Product.name IN

(SELECTproduct
FROM Purchase
WHERE Date =‘Oct, 25, 1999’);

Example:

22

Data Definition in SQL
So far we have see the Data Manipulation Language, DML
Next: Data Definition Language (DDL)

Data types:
Defines the types.

Data definition:defining the schema.

• Create tables
• Delete tables
• Modify table schema

Indexes: to improve performance

23

Creating Tables

CREATE TABLE Person(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

CREATE TABLEPerson(

name VARCHAR(30),
social-security-number INT,
age SHORTINT,
city VARCHAR(30),
gender BIT(1),
Birthdate DATE

);

24

Deleting or Modifying a Table
Deleting:

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

ALTER TABLE Person
ADD phone CHAR(16);

ALTER TABLE Person
DROP age;

Altering: (adding or removing an attribute).

What happens when you make changes to the schema?

Example:

DROP Person; DROPPerson; Example: Exercise with care !!

25

Default Values

Specifying default values:

CREATE TABLE Person(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

CREATE TABLEPerson(
name VARCHAR(30),
social-security-number INT,
age SHORTINT DEFAULT 100,
city VARCHAR(30) DEFAULT ‘Seattle’,
gender CHAR(1) DEFAULT ‘?’,
Birthdate DATE

The default of defaults: NULL

26

Indexes
REALLY important to speed up query processing time.

Suppose we have a relation

Person (name, age, city)

Sequential scan of the file Person may take long

SELECT *
FROM Person
WHERE name = “Smith”

SELECT*
FROM Person
WHERE name = “Smith”

27

• Create an index on name:

Indexes

Smith ….….CharlesBettyAdam

B+ trees have fan-out of 100s: max 4 levels !
Will discuss in the second half of this course

28

Creating Indexes

CREATE INDEX nameIndex ON Person(name)CREATE INDEX nameIndex ON Person(name)

Syntax:

29

Creating Indexes

Indexes can be useful in range queries too:

B+ trees help in:

Why not create indexes on everything?

CREATE INDEX ageIndex ON Person (age)CREATE INDEXageIndex ON Person (age)

SELECT *
FROM Person
WHERE age > 25 AND age < 28

SELECT*
FROM Person
WHEREage > 25 AND age < 28

30

Creating Indexes
Indexes can be created on more than one attribute:

SELECT *
FROM Person
WHERE age = 55 AND city = “Seattle”

SELECT*
FROM Person
WHEREage = 55 AND city = “Seattle”

Helps in:

SELECT *
FROM Person
WHERE city = “Seattle”

SELECT*
FROM Person
WHEREcity = “Seattle”

But not in:

CREATE INDEX doubleindex ON
Person (age, city)

CREATE INDEXdoubleindexON
Person (age, city)

Example:

SELECT *
FROM Person
WHERE age = 55

SELECT*
FROM Person
WHEREage = 55

and even in:

31

The Index Selection Problem

• Why not build an index on every attribute ?
On every pair of attributes ? Etc. ?

• The index selection problem is hard:
balance the query cost v.s. the update cost,
in a large application workload

