Lecture 05
Views, Constraints

Wednesday, April 4, 2007

Outline

e Views
— Chapter 6.7

e Constraints
— Chapter 7

Views
Views are relations, except that they are not ais1 stored.
For presenting different information to differerseus

Employedssn, name, department, project, salary)

CREATE VIEW DeveloperAS
SELECTname, project
FROM Employee
WHEREdepartment = ‘Development

Payroll has access EEmployee others only tdevelopers

Example
Purchase(customer, product, store)
Product(pnameprice)

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Productty,
WHERE x.product = y.pnam

CustomerPrice(customer, price¥virtual table”

4

Purchase(customer, product, store)
Product(pnameprice)

CustomerPrice(customer, price)

We can later use the view:

SELECT u.customer, v.store

FROM CustomerPrice lPurchase v

WHERE u.customer = v.customer AN
u.price > 100

Types of Views

We discuss
only virtual
views In class

e Virtual views:
— Used in databases
— Computed only on-demand — slow at runtime
— Always up to date

 Materializedviews
— Used In data warehouses

— Pre-computed offline — fast at runtime
— May have stale data

View:

Query:

Queries Over Views:
Query Modification

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Produc

WHERE x.product = y.pnam

SELECT u.customer, v.store

FROM CustomerPrice ,lPurchase v

WHERE u.customer = v.customer AN
u.price > 100

Queries Over Views:
Query Modification

Modified query:

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname) u, Purchasg-v,
WHERE u.customer = v.customer AND

u.price > 100

Queries Over Views:
Query Modification

Modified and rewritten query:

SELECT x.customer, v.store
FROM Purchase x, Produc| Purchase v
WHERE x.customer = v.customer AND
y.price > 100 AND
X.product = y.pname

But What About This ?

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

77?7

10

Answer

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice lPurchase v

WHERE u.customer = v.customer AN
u.price > 100

!

SELECT DISTINCTx.customer, v.store
FROM Purchase x, Product Purchase v
WHERE x.customer = v.customer AND
y.price > 100 AND
X.product = y.pname

11

Applications of Virtual Views

* Logical data independence:
— Vertical data partitioning
— Horizontal data partitioning

o Security

— Table V reveals only what the users are allowed
to know

12

Vertical Partitioning

Resumes |[SSN Name |Address |Resume |Picture
234234 |Mary |Huston |Clobl... |Blobl...
345345 | Sue Seattle |Clob2... |Blob2...
345343 |Joan |Seattle |Clob3... [Blob3...
234234 | Ann Portland | Clob4... |Blob4...

T1 T2 T3
SSN Name | Address SSN Resume SSN Picture
234234 | Mary | Huston 234234 | Clobl... 234234 | Blobl...
345345 | Sue | Seattle 345345 | Clob2... 345345 | Blob2...

- \J

Vertical Partitioning

CREATE VIEW ResumesAS

SELECT T1.ssn, Tl.name, T1l.address,
T2.resume, T3.picture

FROM T1,T2,T3

WHERE T1.ssn=T2.ssn and T2.ssn=T3.

@do we use vertical par@

14

Vertical Partitioning

SELECTaddress
FROM Resumes
WHERE name = ‘Sue}-

Which of the tables T1, T2, T3 will
be gqueried by the system ?

15

Vertical Partitioning

Applications:

 When some fields are large, and rarely accessed
— E.g. Picture

e |n distributed databases

— Customer personal info at one site, customerlprafi
another

* |In data integration
— T1 comes from one source
— T2 comes from a different source

16

Horizontal Partitioning

CustomerslnHuston

Customers
SSN Name | City Country
234234 | Mary | Huston USA
345345 | Sue Seattle USA
345343 |Joan | Seattle USA
234234 | Ann Portland | USA
-- Frank | Calgary | Canada
- Jean | Montreal | Canada

SSN Name | City Country
234234 | Mary | Huston | USA
Customer sl nSeattle

SSN Name | City Country
345345 | Sue Seattle | USA
345343 | Joan | Seattle | USA
Customer slnCanada

SSN | Name | City Country
-- Frank | Calgary | Canada
-- Jean | Montreal

Canada
It

Horizontal Partitioning

CREATE VIEW CustomersAS
CustomersinHuston
UNION ALL
CustomersinSeattle
UNION ALL

18

Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ?77?

19

Better:

Horizontal Partitioning

CREA"
(SE

'E VIEW CustomersAS
L ECT * FROM CustomersinHust

WH

ERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersinSeattie.
WHERE city = ‘Seattle’)

UNION ALL

20

Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

d

SELECTname
FROM CusotmersinSeatt

21

Horizontal Partitioning

Applications:
e Optimizations:

— E.g. archived applications and active
applications

e Distributed databases
e Data integration

22

Fred is

Views and Security

Fred is not
allowed to

Customers: s
Name Address |Balance

Mary Huston [450.99 4

Sue Seattle -240

Joan Seattle 333.25

Ann Portland |-520

allowed to
see this

CREATE VIEW PublicCustome
SELECT Name, Address
FROM Customers

23

Views and Security

Customers:

Name Address |Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland |-520

John is
allowed to
see only <0
balances

CREATE VIEW BadCreditCustome
SELECT *
FROM Customers

WHERE Balance <0

24

Constraints in SQL

Constraints in SQL:
. Key;, foreign keys | w
o Attribute-level constraints

e Tuple-level constraints

e Global constraints: assertions

Most
complex

The more complex the constraint, the harder o ish
to enforce

25

Keys

CREATE TABLEProduct (
name CHAR(30PRIMARY KEY,
category VARCHAR(20))

OR: Product(namecategory)

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20

PRIMARY KEY (name))

26

Keys with Multiple Attributes

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category

Name

Category

Price

Gizmo

Gadget

10

Camera

Photo

20

Gizmo

Photo

30

110

et

Product(name, categaqrprice)

27

Other Keys

CREATE TABLE Product (
productiID CHAR(10),
name CHAR(30),
category VARCHAR(20),

orice INT,

PRIMARY KEY (productID),

UNIQUE (name, category))

There is at most oneRIMARY KEY,
there can be manyNIQUE

28

Foreign Key Constrai

Referential
Integrity
constraints

CREATE TABLE Purchase (

prodName CHAR(30)
REFERENCE®roduct(name}s),
date DATETIME) N

May write
just Product

prodName is doreign key to Product(name)
(why ?)

name must be kaey in Product

29

Produc/\Purchase

Name Category
Gizmo gadget
Camera Photo

OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

30

Foreign Key Constraints

e OR
CREATE TABLEPurchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)
REFERENCESProduct(name, categoryp)

e (name, category) must be a PRIMARY
KEY

31

What happens during updates ?

Types of updates:

* In Purchase: insert/update
* In Product: delete/update

Product
yo
Name Category
Gizmo gadget
Camera Photo
OneClick Photo

Purchase
~—

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz

32

What happens during updates ?

 SQL has three policies for maintaining
referential integrity:

* Rejectviolating modifications (default)

« Cascadeafter a delete/update do a
delete/update

o Set-nullset foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

33

Constraints on Attributes and
Tuples

e Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

e Constraints on tuples
CHECK condition

34

What
IS the difference from
Foreign-Key ?

CREATE TABLE Purchase y
prodName CHAR(30)
CHECK (prodName IN

SELECTProduct.nam
FROM Product),
date DATETIMENOT NULL)

35

General Assertions

CREATE ASSERTIONmyAssertCHECK
NOT EXISTY
SELECTProduct.name
FROM Product, Purchase
WHEREProduct.name = Purchase.prodN
GROUP BYProduct.name
HAVING count(*) > 200)

36

