
1

Lecture 05
Views, Constraints

Wednesday, April 4, 2007

2

Outline

• Views
– Chapter 6.7

• Constraints
– Chapter 7

3

Views
Views are relations, except that they are not physically stored.

For presenting different information to different users

Employee(ssn, name, department, project, salary)

Payroll has access to Employee, others only to Developers

CREATE VIEW Developers AS
SELECT name, project
FROM Employee
WHERE department = ‘Development’

CREATE VIEW Developers AS
SELECTname, project
FROM Employee
WHERE department = ‘Development’

4

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

Example
Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)“virtual table”

5

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

We can later use the view:

Purchase(customer, product, store)
Product(pname, price)

CustomerPrice(customer, price)

6

Types of Views

• Virtual views:
– Used in databases
– Computed only on-demand – slow at runtime
– Always up to date

• Materializedviews
– Used in data warehouses
– Pre-computed offline – fast at runtime
– May have stale data

We discuss
only virtual

views in class

7

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

CREATE VIEW CustomerPrice AS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Product y
WHERE x.product = y.pname

View:

Query:

8

Queries Over Views:
Query Modification

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y
WHERE x.product = y.pname) u, Purchase v

WHERE u.customer = v.customer AND
u.price > 100

Modified query:

9

Queries Over Views:
Query Modification

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

SELECT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

Modified and rewritten query:

10

But What About This ?

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCTu.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

??

11

Answer

SELECT DISTINCT u.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCTu.customer, v.store
FROM CustomerPrice u, Purchase v
WHERE u.customer = v.customer AND

u.price > 100

SELECT DISTINCT x.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

SELECT DISTINCTx.customer, v.store
FROM Purchase x, Product y, Purchase v,
WHERE x.customer = v.customer AND

y.price > 100 AND
x.product = y.pname

12

Applications of Virtual Views

• Logical data independence:
– Vertical data partitioning
– Horizontal data partitioning

• Security
– Table V reveals only what the users are allowed

to know

13

Vertical Partitioning

Clob4…

Clob3…

Clob2…

Clob1…

Resume

234234

345343

345345

234234

SSN

Blob4…PortlandAnn

Blob3…SeattleJoan

Blob2…SeattleSue

Blob1…HustonMary

PictureAddressNameResumes

. . .

345345

234234

SSN

SeattleSue

HustonMary

AddressName

Clob2…

Clob1…

Resume

345345

234234

SSN

345345

234234

SSN

Blob2…

Blob1…

Picture

T1 T2 T3

14

Vertical Partitioning

CREATE VIEW Resumes AS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

CREATE VIEW ResumesAS
SELECT T1.ssn, T1.name, T1.address,

T2.resume, T3.picture
FROM T1,T2,T3
WHERE T1.ssn=T2.ssn and T2.ssn=T3.ssn

When do we use vertical partitioning ?

15

Vertical Partitioning

SELECT address
FROM Resumes
WHERE name = ‘Sue’

SELECT address
FROM Resumes
WHERE name = ‘Sue’

Which of the tables T1, T2, T3 will
be queried by the system ?

16

Vertical Partitioning

Applications:
• When some fields are large, and rarely accessed

– E.g. Picture

• In distributed databases
– Customer personal info at one site, customer profile at

another

• In data integration
– T1 comes from one source
– T2 comes from a different source

17

Horizontal Partitioning

CanadaMontrealJean--

USAPortlandAnn234234

CanadaCalgaryFrank--

345343

345345

234234

SSN

USASeattleJoan

USASeattleSue

USAHustonMary

CountryCityName

Customers

USAHustonMary234234

CountryCityNameSSN

CustomersInHuston

USASeattleSue345345

USASeattleJoan345343

CountryCityNameSSN

CustomersInSeattle

CanadaCalgaryFrank--

CanadaMontrealJean--

CountryCityNameSSN

CustomersInCanada

18

Horizontal Partitioning

CREATE VIEW Customers AS
CustomersInHuston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

CREATE VIEW CustomersAS
CustomersInHuston

UNION ALL
CustomersInSeattle

UNION ALL
. . .

19

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ???

20

Horizontal Partitioning

CREATE VIEW Customers AS
(SELECT * FROM CustomersInHuston
WHERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

CREATE VIEW CustomersAS
(SELECT * FROM CustomersInHuston
WHERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersInSeattle
WHERE city = ‘Seattle’)

UNION ALL
. . .

Better:

21

Horizontal Partitioning

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM Cusotmers
WHERE city = ‘Seattle’

SELECT name
FROM CusotmersInSeattle

SELECT name
FROM CusotmersInSeattle

22

Horizontal Partitioning

Applications:

• Optimizations:
– E.g. archived applications and active

applications

• Distributed databases

• Data integration

23

Views and Security

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

CREATE VIEW PublicCustomers
SELECT Name, Address
FROM Customers

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

Fred is
allowed to

see this

Customers:
Fred is not
allowed to

see this

24

Views and Security

-520PortlandAnn

333.25SeattleJoan

-240SeattleSue

450.99HustonMary

BalanceAddressName

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

CREATE VIEW BadCreditCustomers
SELECT *
FROM Customers
WHERE Balance < 0

Customers: John is
allowed to
see only <0

balances

25

Constraints in SQL

Constraints in SQL:

• Keys, foreign keys

• Attribute-level constraints

• Tuple-level constraints

• Global constraints: assertions

The more complex the constraint, the harder it is to check and
to enforce

simplest

Most
complex

26

Keys

OR:

CREATE TABLE Product (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLEProduct (
name CHAR(30) PRIMARY KEY,
category VARCHAR(20))

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20)

PRIMARY KEY (name))

Product(name, category)

27

Keys with Multiple Attributes

CREATE TABLE Product (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category))

40GadgetGizmo

30

20

10

Price

PhotoGizmo

PhotoCamera

GadgetGizmo

CategoryName Product(name, category, price)

28

Other Keys

CREATE TABLE Product (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

CREATE TABLEProduct (
productID CHAR(10),
name CHAR(30),
category VARCHAR(20),
price INT,
PRIMARY KEY (productID),
UNIQUE (name, category))

There is at most one PRIMARY KEY;
there can be many UNIQUE

29

Foreign Key Constraints

CREATE TABLE Purchase (
prodName CHAR(30)

REFERENCES Product(name),
date DATETIME)

CREATE TABLEPurchase (
prodName CHAR(30)

REFERENCESProduct(name),
date DATETIME)

prodName is a foreign key to Product(name)
name must be a key in Product

Referential
integrity

constraints

May write
just Product

(why ?)

30

PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

31

Foreign Key Constraints

• OR

• (name, category) must be a PRIMARY
KEY

CREATE TABLE Purchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)

REFERENCES Product(name, category)

CREATE TABLEPurchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY(prodName, category)

REFERENCESProduct(name, category)

32
PhotoOneClick

PhotoCamera

gadgetGizmo

CategoryName

WizCamera

RitzCamera

WizGizmo

StoreProdName

Product Purchase

What happens during updates ?

Types of updates:

• In Purchase: insert/update

• In Product: delete/update

33

What happens during updates ?

• SQL has three policies for maintaining
referential integrity:

• Rejectviolating modifications (default)
• Cascade: after a delete/update do a

delete/update
• Set-nullset foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6

34

Constraints on Attributes and
Tuples

• Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

• Constraints on tuples
CHECK condition

35

CREATE TABLE Purchase (
prodName CHAR(30)

CHECK (prodName IN
SELECT Product.name
FROM Product),

date DATETIME NOT NULL)

CREATE TABLEPurchase (
prodName CHAR(30)

CHECK(prodName IN
SELECTProduct.name
FROMProduct),

date DATETIME NOT NULL)

What
is the difference from

Foreign-Key ?

36

General Assertions

CREATE ASSERTION myAssert CHECK
NOT EXISTS(

SELECT Product.name
FROM Product, Purchase
WHERE Product.name = Purchase.prodName
GROUP BY Product.name
HAVING count(*) > 200)

CREATE ASSERTIONmyAssert CHECK
NOT EXISTS(

SELECTProduct.name
FROMProduct, Purchase
WHEREProduct.name = Purchase.prodName
GROUP BYProduct.name
HAVING count(*) > 200)

