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Outline

e Views
— Chapter 6.7

e Constraints
— Chapter 7



Views
Views are relations, except that they are not ais1 stored.
For presenting different information to differerseus

Employedssn, name, department, project, salary)

CREATE VIEW DeveloperAS
SELECTname, project
FROM Employee
WHEREdepartment = ‘Development

Payroll has access EEmployee others only tdevelopers



Example
Purchase(customer, product, store)
Product(pnameprice)

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM  Purchase x, Productty,
WHERE x.product = y.pnam

CustomerPrice(customer, price¥virtual table”
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Purchase(customer, product, store)
Product(pnameprice)

CustomerPrice(customer, price)

We can later use the view:

SELECT u.customer, v.store

FROM CustomerPrice lPurchase v

WHERE u.customer = v.customer AN
u.price > 100




Types of Views

We discuss
only virtual
views In class

e Virtual views:
— Used in databases
— Computed only on-demand — slow at runtime
— Always up to date

 Materializedviews
— Used In data warehouses

— Pre-computed offline — fast at runtime
— May have stale data




View:

Query:

Queries Over Views:
Query Modification

CREATE VIEW CustomerPriceAS
SELECT x.customer, y.price
FROM Purchase x, Produc

WHERE x.product = y.pnam

SELECT u.customer, v.store

FROM CustomerPrice ,lPurchase v

WHERE u.customer = v.customer AN
u.price > 100




Queries Over Views:
Query Modification

Modified query:

SELECT u.customer, v.store
FROM (SELECT x.customer, y.price

FROM Purchase x, Product y

WHERE x.product = y.pname) u, Purchasg-v,
WHERE u.customer = v.customer AND

u.price > 100




Queries Over Views:
Query Modification

Modified and rewritten query:

SELECT x.customer, v.store
FROM Purchase x, Produc| Purchase v
WHERE x.customer = v.customer AND
y.price > 100 AND
X.product = y.pname




But What About This ?

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice UPurchase v

WHERE u.customer = v.customer AN
u.price > 100

77?7
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Answer

SELECT DISTINCTu.customer, v.stor

FROM CustomerPrice lPurchase v

WHERE u.customer = v.customer AN
u.price > 100

!

SELECT DISTINCTx.customer, v.store
FROM Purchase x, Product Purchase v
WHERE x.customer = v.customer AND
y.price > 100 AND
X.product = y.pname
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Applications of Virtual Views

* Logical data independence:
— Vertical data partitioning
— Horizontal data partitioning

o Security

— Table V reveals only what the users are allowed
to know
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Vertical Partitioning

Resumes |[SSN Name |Address |Resume |Picture
234234 |Mary |Huston |Clobl... |Blobl...
345345 | Sue Seattle |Clob2... |Blob2...
345343 |Joan |Seattle |Clob3... [Blob3...
234234 | Ann Portland | Clob4... |Blob4...

T1 T2 T3
SSN Name | Address SSN Resume SSN Picture
234234 | Mary | Huston 234234 | Clobl... 234234 | Blobl...
345345 | Sue | Seattle 345345 | Clob2... 345345 | Blob2...

- \J




Vertical Partitioning

CREATE VIEW ResumesAS

SELECT T1.ssn, Tl.name, T1l.address,
T2.resume, T3.picture

FROM T1,T2,T3

WHERE T1.ssn=T2.ssn and T2.ssn=T3.

@do we use vertical par@
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Vertical Partitioning

SELECTaddress
FROM Resumes
WHERE name = ‘Sue}-

Which of the tables T1, T2, T3 will
be gqueried by the system ?
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Vertical Partitioning

Applications:

 When some fields are large, and rarely accessed
— E.g. Picture

e |n distributed databases

— Customer personal info at one site, customerlprafi
another

* |In data integration
— T1 comes from one source
— T2 comes from a different source
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Horizontal Partitioning

CustomerslnHuston

Customers
SSN Name | City Country
234234 | Mary | Huston USA
345345 | Sue Seattle USA
345343 |Joan | Seattle USA
234234 | Ann Portland | USA
-- Frank | Calgary | Canada
- Jean | Montreal | Canada

SSN Name | City Country
234234 | Mary | Huston | USA
Customer sl nSeattle

SSN Name | City Country
345345 | Sue Seattle | USA
345343 | Joan | Seattle | USA
Customer slnCanada

SSN | Name | City Country
-- Frank | Calgary | Canada
-- Jean | Montreal

Canada
It




Horizontal Partitioning

CREATE VIEW CustomersAS
CustomersinHuston
UNION ALL
CustomersinSeattle
UNION ALL
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Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

Which tables are inspected by the system ?

WHY ?77?
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Better:

Horizontal Partitioning

CREA"
(SE

'E VIEW CustomersAS
L ECT * FROM CustomersinHust

WH

ERE city = ‘Huston’)

UNION ALL
(SELECT * FROM CustomersinSeattie.
WHERE city = ‘Seattle’)

UNION ALL
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Horizontal Partitioning

SELECTname
FROM Cusotmers
WHERE city = ‘Seattle’

d

SELECTname
FROM CusotmersinSeatt
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Horizontal Partitioning

Applications:
e Optimizations:

— E.g. archived applications and active
applications

e Distributed databases
e Data integration
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Fred is

Views and Security

Fred is not
allowed to

Customers: s
Name Address |Balance

Mary Huston [450.99 4

Sue Seattle -240

Joan Seattle 333.25

Ann Portland |-520

allowed to
see this

CREATE VIEW PublicCustome
SELECT Name, Address
FROM Customers
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Views and Security

Customers:

Name Address |Balance
Mary Huston 450.99
Sue Seattle -240
Joan Seattle 333.25
Ann Portland |-520

John is
allowed to
see only <0
balances

CREATE VIEW BadCreditCustome
SELECT *
FROM Customers

WHERE Balance <0
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Constraints in SQL

Constraints in SQL:
. Key;, foreign keys | w
o Attribute-level constraints

e Tuple-level constraints

e Global constraints: assertions

Most
complex

The more complex the constraint, the harder o ish
to enforce
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Keys

CREATE TABLEProduct (
name CHAR(30PRIMARY KEY,
category VARCHAR(20))

OR: Product(namecategory)

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20

PRIMARY KEY (name))
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Keys with Multiple Attributes

CREATE TABLEProduct (
name CHAR(30),
category VARCHAR(20),
price INT,

PRIMARY KEY (name, category

Name

Category

Price

Gizmo

Gadget

10

Camera

Photo

20

Gizmo

Photo

30

110

et

Product(name, categaqrprice)
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Other Keys

CREATE TABLE Product (
productiID CHAR(10),
name CHAR(30),
category VARCHAR(20),

orice INT,

PRIMARY KEY (productID),

UNIQUE (name, category))

There is at most oneRIMARY KEY,
there can be manyNIQUE
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Foreign Key Constrai

Referential
Integrity
constraints

CREATE TABLE Purchase (

prodName CHAR(30)
REFERENCE®roduct(name}s),
date DATETIME) N

May write
just Product

prodName is doreign key to Product(name)
(why ?)

name must be kaey in Product
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Produc/\Purchase

Name Category
Gizmo gadget
Camera Photo

OneClick Photo

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz
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Foreign Key Constraints

e OR
CREATE TABLEPurchase (
prodName CHAR(30),
category VARCHAR(20),
date DATETIME,
FOREIGN KEY (prodName, category)
REFERENCESProduct(name, categoryp)

e (name, category) must be a PRIMARY
KEY
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What happens during updates ?

Types of updates:

* In Purchase: insert/update
* In Product: delete/update

Product
yo
Name Category
Gizmo gadget
Camera Photo
OneClick Photo

Purchase
~—

ProdName Store
Gizmo Wiz
Camera Ritz
Camera Wiz
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What happens during updates ?

 SQL has three policies for maintaining
referential integrity:

* Rejectviolating modifications (default)

« Cascadeafter a delete/update do a
delete/update

o Set-nullset foreign-key field to NULL

READING ASSIGNEMNT: 7.1.5, 7.1.6
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Constraints on Attributes and
Tuples

e Constraints on attributes:
NOT NULL -- obvious meaning...
CHECK condition -- any condition !

e Constraints on tuples
CHECK condition
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What
IS the difference from
Foreign-Key ?

CREATE TABLE Purchase y
prodName CHAR(30)
CHECK (prodName IN

SELECTProduct.nam
FROM Product),
date DATETIMENOT NULL)
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General Assertions

CREATE ASSERTIONmyAssertCHECK
NOT EXISTY
SELECTProduct.name
FROM Product, Purchase
WHEREProduct.name = Purchase.prodN
GROUP BYProduct.name
HAVING count(*) > 200)
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