Lectures 8 and 9: Database Design

Wednesday\&Friday, April 10\&12

Announcements/Reminders

- Homework 1: solutions are posted
- Homework 2: posted (due Friday, April 20)
- Project Phase 1 due Friday, April 12

Outline

- The relational data model: 3.1
- Functional dependencies: 3.4

Schema Refinements $=$ Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

First Normal Form (1NF)

- A database schema is in First Normal Form if all tables are flat

Student

Name	GPA	Courses
Alice	3.8	Math DB os Bob 3.7 Carol 3.9 OB
Oath		

Student

Name	GPA
Alice	3.8
Bob	3.7
Carol	3.9

Takes
Student Course Alice Course Carol Math Alice DB Bob DB Alice OS Carol OS\quadCourse Math DB OS

Relational Schema Design

Conceptual Model:

Relational Model: plus FD's

Normalization:
Eliminates anomalies

Data Anomalies

When a database is poorly designed we get anomalies:

Redundancy: data is repeated

Updated anomalies: need to change in several places

Delete anomalies: may lose data when we don't want

Relational Schema Design

Recall set attributes (persons with several phones):

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield

One person may have multiple phones, but lives in only one city

Anomalies:

- Redundancy = repeat data
- Update anomalies $=$ Fred moves to "Bellevue"
- Deletion anomalies = Joe deletes his phone number: what is his city?

Relation Decomposition

Break the relation into two:

	Name Fred Fred Joe	SSN	PhoneNumber	City
		123-45-6789	206-555-1234	Seattle
		123-45-6789	206-555-6543	Seattle
		987-65-4321	908-555-2121	Westfield
Name	SSN	City	SSN	PhoneNumber
Fred	123-45-6789	Seattle	123-45-6789	206-555-1234
Joe	987-65-4321	Westfield	123-45-6789	206-555-6543
Anomalies have gone:			987-65-4321	908-555-2121

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone number (how ?)

Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its functional dependencies
- Use them to design a better relational schema

Functional Dependencies

- A form of constraint
- hence, part of the schema
- Finding them is part of the database design
- Also used in normalizing the relations

Functional Dependencies

Definition:

If two tuples agree on the attributes

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}
$$

then they must also agree on the attributes

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Formally:

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

When Does an FD Hold

Definition: $\quad A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ holds in R if:

$$
\forall \mathrm{t}, \mathrm{t}^{\prime} \in \mathrm{R},\left(\mathrm{t} \cdot \mathrm{~A}_{1}=\mathrm{t}^{\prime} . \mathrm{A}_{1} \wedge \ldots \wedge \mathrm{t} \cdot \mathrm{~A}_{\mathrm{m}}=\mathrm{t}^{\prime} . \mathrm{A}_{\mathrm{m}} \Rightarrow \mathrm{t} \cdot \mathrm{~B}_{1}=\mathrm{t}^{\prime} . \mathrm{B}_{1} \wedge \ldots \wedge \mathrm{t} \cdot \mathrm{~B}_{\mathrm{n}}=\mathrm{t}^{\prime} . \mathrm{B}_{\mathrm{n}}\right)
$$

R

if t, t ' agree here then t, t^{\prime} agree here

Examples

An FD holds, or does not hold on an instance:

EmpID	Name	Phone	Position
E0045	Smith	1234	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	1234	Lawyer

EmpID \rightarrow Name, Phone, Position
Position \rightarrow Phone
but not Phone \rightarrow Position

Example

EmpID	Name	Phone	Position	
E0045	Smith	1234	Clerk	
E3542	Mike	$9876 \leftarrow$	Salesrep	
E1111	Smith	$9876 \leftarrow$	Salesrep	
E9999	Mary	1234	Lawyer	
Position \rightarrow Phone				

Example

EmpID	Name	Phone	Position
E0045	Smith	$1234 \rightarrow$	Clerk
E3542	Mike	9876	Salesrep
E1111	Smith	9876	Salesrep
E9999	Mary	$1234 \rightarrow$	Lawyer

but not Phone \rightarrow Position

Example

FD's are constraints:

- On some instances they hold
- On others they don't

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price }
\end{aligned}
$$

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Green	Toys	99

Does this instance satisfy all the FDs ?

Example

name \rightarrow color category \rightarrow department color, category \rightarrow price

name	category	color	department	price
Gizmo	Gadget	Green	Toys	49
Tweaker	Gadget	Black	Toys	99
Gizmo	Stationary	Green	Office-supp.	59

An Interesting Observation

If all these FDs are true:

```
name }->\mathrm{ color
category }->\mathrm{ department
color, category }->\mathrm{ price
```

Then this FD also holds:
name, category \rightarrow price

Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find all FDs, then look for the bad ones

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Is equivalent to
Splitting rule
and
Combing rule

Armstrong's Rules (1/3)

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~A}_{\mathrm{i}}
$$

Trivial Rule

where $\mathrm{i}=1,2, \ldots, \mathrm{n}$

Why?

Armstrong's Rules (1/3)

Transitive Closure Rule

If

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

and

$$
\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

then

$$
\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{p}}
$$

Why?

	A_{1}	\ldots	$\mathrm{~A}_{\mathrm{m}}$		B_{1}	\ldots	$\mathrm{~B}_{\mathrm{m}}$		C_{1}	\ldots	C_{p}	

Example (continued)

Start from the following FDs:

Infer the following FDs:

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	
5. name, category \rightarrow color	
6. name, category \rightarrow category	
7. name, category \rightarrow color, category	
8. name, category \rightarrow price	

Example (continued)

Answers:

1. name \rightarrow color
2. category \rightarrow department
3. color, category \rightarrow price

Inferred FD	Which Rule did we apply ?
4. name, category \rightarrow name	Trivial rule
5. name, category \rightarrow color	Transitivity on 4, 1
6. name, category \rightarrow category	Trivial rule
7. name, category \rightarrow color, category	Split/combine on 5, 6
8. name, category \rightarrow price	Transitivity on 3, 7

THIS IS TOO HARD! Let's see an easier way.

Closure of a set of Attributes

Given a set of attributes A_{1}, \ldots, A_{n}
The closure, $\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}\right\}^{+}=$the set of attributes B s.t. $A_{1}, \ldots, A_{n} \rightarrow B$

Example:

Closures:

$$
\begin{aligned}
& \text { name } \rightarrow \text { color } \\
& \text { category } \rightarrow \text { department } \\
& \text { color, category } \rightarrow \text { price }
\end{aligned}
$$

$$
\text { name }^{+}=\{\text {name, color }\}
$$

$$
\{\text { name }, \text { category }\}^{+}=\{\text {name, category, color, department, price }\}
$$

$$
\text { color }^{+}=\{\text {color }\}
$$

Closure Algorithm

$X=\{A 1, \ldots, A n\}$.
Repeat until X doesn't change do:
if $\quad B_{1}, \ldots, B_{n} \rightarrow C$ is a $F D$ and $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}$ are all in X then add C to X .

Example:

```
name }->\mathrm{ color
category }->\mathrm{ department
color, category }->\mathrm{ price
```

$\{\text { name, category }\}^{+}=$
\{ name, category, color, department, price \}
Hence: name, category \rightarrow color, department, price

Example

In class:

R(A,B,C,D,E,F)

$$
\begin{aligned}
& \mathrm{A}, \mathrm{~B} \rightarrow \mathrm{C} \\
& \mathrm{~A}, \mathrm{D} \rightarrow \mathrm{E} \\
& \mathrm{~B} \\
& \mathrm{~A}, \mathrm{~F} \rightarrow \mathrm{D} \\
& \mathrm{~B}
\end{aligned}
$$

Compute $\{\mathrm{A}, \mathrm{B}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{B}$,
Compute $\{\mathrm{A}, \mathrm{F}\}^{+} \quad \mathrm{X}=\{\mathrm{A}, \mathrm{F}$,

Why Do We Need Closure

- With closure we can find all FD's easily
- To check if $\mathrm{X} \rightarrow \mathrm{A}$
- Compute X^{+}
- Check if $\mathrm{A} \in \mathrm{X}^{+}$

Using Closure to Infer ALL FDs

Example:

$$
\begin{array}{lll}
\mathrm{A}, \mathrm{~B} & \rightarrow \mathrm{C} \\
\mathrm{~A}, \mathrm{D} & \rightarrow \mathrm{~B} \\
\mathrm{~B} & \rightarrow & \mathrm{D}
\end{array}
$$

Step 1: Compute X^{+}, for every X :

$$
\begin{aligned}
& \mathrm{A}+=\mathrm{A}, \mathrm{~B}+=\mathrm{BD}, \mathrm{C}+=\mathrm{C}, \mathrm{D}+=\mathrm{D} \\
& \mathrm{AB}+=\mathrm{ABCD}, \mathrm{AC}+=\mathrm{AC}, \mathrm{AD}+=\mathrm{ABCD}, \\
& \mathrm{BC}+=\mathrm{BCD}, \mathrm{BD}+=\mathrm{BD}, \mathrm{CD}+=\mathrm{CD} \\
& \mathrm{ABC}+=\mathrm{ABD}+=\mathrm{ACD}^{+}=\mathrm{ABCD} \text { (no need to compute}- \text { why } ? \text {) } \\
& \mathrm{BCD}^{+}=\mathrm{BCD}, \mathrm{ABCD}+=\mathrm{ABCD}
\end{aligned}
$$

Step 2: Enumerate all FD's $\mathrm{X} \rightarrow \mathrm{Y}$, s.t. $\mathrm{Y} \subseteq \mathrm{X}^{+}$and $\mathrm{X} \cap \mathrm{Y}=\varnothing$:

$$
\mathrm{AB} \rightarrow \mathrm{CD}, \mathrm{AD} \rightarrow \mathrm{BC}, \mathrm{ABC} \rightarrow \mathrm{D}, \mathrm{ABD} \rightarrow \mathrm{C}, \mathrm{ACD} \rightarrow \mathrm{~B}
$$

Another Example

- Enrollment(student, major, course, room, time)
student \rightarrow major
major, course \rightarrow room
course \rightarrow time

What else can we infer ? [in class, or at home]

Keys

- A superkey is a set of attributes A_{1}, \ldots, A_{n} s.t. for any other attribute B, we have $A_{1}, \ldots, A_{n} \rightarrow B$
- A key is a minimal superkey
- I.e. set of attributes which is a superkey and for which no subset is a superkey

Computing (Super)Keys

- Compute X^{+}for all sets X
- If $\mathrm{X}^{+}=$all attributes, then X is a key
- List only the minimal X's

Example

Product(name, price, category, color)

$$
\begin{aligned}
& \text { name, category } \rightarrow \text { price } \\
& \text { category } \rightarrow \text { color } \\
& \hline
\end{aligned}
$$

What is the key?

Example

Product(name, price, category, color)

$$
\begin{aligned}
& \text { name, category } \rightarrow \text { price } \\
& \text { category } \rightarrow \text { color } \\
& \hline
\end{aligned}
$$

What is the key?
(name, category) $+=$ name, category, price, color
Hence (name, category) is a key

Examples of Keys

Enrollment(student, address, course, room, time)

student \rightarrow address
room, time \rightarrow course
student, course \rightarrow room, time

(find keys at home)

Eliminating Anomalies

Main idea:

- $\mathrm{X} \rightarrow \mathrm{A}$ is OK if X is a (super)key
- $\mathrm{X} \rightarrow \mathrm{A}$ is not OK otherwise

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber \}
Hence SSN \rightarrow Name, City is a "bad" dependency

Key or Keys?

Can we have more than one key?

Given $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ define FD's s.t. there are two or more keys

Key or Keys?

Can we have more than one key?

Given $\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ define FD's s.t. there are two or more keys

$$
\begin{aligned}
& \mathrm{AB} \rightarrow \mathrm{C} \\
& \mathrm{BC} \rightarrow \mathrm{~A}
\end{aligned} \quad \text { or } \quad \begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BC} \\
& \mathrm{~B} \rightarrow \mathrm{AC}
\end{aligned}
$$

what are the keys here ?
Can you design FDs such that there are three keys?

Boyce-Codd Normal Form

A simple condition for removing anomalies from relations:
A relation R is in BCNF if:
If $A_{1}, \ldots, A_{n} \rightarrow B$ is a non-trivial dependency in R, then $\left\{A_{1}, \ldots, A_{n}\right\}$ is a superkey for R

In other words: there are no "bad" FDs

Equivalently:
$\forall \mathrm{X}$, either $\left(\mathrm{X}^{+}=\mathrm{X}\right) \quad$ or $\quad\left(\mathrm{X}^{+}=\right.$all attributes $)$

BCNF Decomposition Algorithm

repeat

choose $A_{1}, \ldots, A_{m} \rightarrow B_{1}, \ldots, B_{n}$ that violates BNCF
split R into $R_{1}\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$ and $R_{2}\left(A_{1}, \ldots, A_{m}\right.$, [others])
continue with both R_{1} and R_{2}
until no more violations

Is there a
 2-attribute
 relation that is not in BCNF ?

In practice, we have a better algorithm (coming ${ }^{43}$ up)

Example

Name	SSN	PhoneNumber	City
Fred	$123-45-6789$	$206-555-1234$	Seattle
Fred	$123-45-6789$	$206-555-6543$	Seattle
Joe	$987-65-4321$	$908-555-2121$	Westfield
Joe	$987-65-4321$	$908-555-1234$	Westfield

SSN \rightarrow Name, City

What the key?
\{SSN, PhoneNumber $\} \quad$ use SSN \rightarrow Name, City to split

Example

Name	$\underline{\text { SSN }}$	City
Fred	$123-45-6789$	Seattle
Joe	$987-65-4321$	Westfield

SSN \rightarrow Name, City

SSN	$\underline{\text { PhoneNumber }}$
$123-45-6789$	$206-555-1234$
$123-45-6789$	$206-555-6543$
$987-65-4321$	$908-555-2121$
$987-65-4321$	$908-555-1234$

Let's check anomalies:
\bullet Redundancy?

- Update?
- Delete?

Example Decomposition

Person(name, SSN, age, hairColor, phoneNumber)
SSN \rightarrow name, age
age \rightarrow hairColor
Decompose in BCNF (in class):

BCNF Decomposition Algorithm

BCNF_Decompose(R)
find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$
if (not found) then " R is in BCNF"
let $\mathrm{Y}=\mathrm{X}^{+}-\mathrm{X}$
let $\mathrm{Z}=$ [all attributes $]-\mathrm{X}^{+}$ decompose R into $\mathrm{R} 1(\mathrm{X} \cup \mathrm{Y})$ and $\mathrm{R} 2(\mathrm{X} \cup \mathrm{Z})$ continue to decompose recursively R1 and R2

Find X s.t.: $\mathrm{X} \neq \mathrm{X}^{+} \neq[$all attributes $]$

Example BCNF Decomposition

```
Person(name, SSN, age, hairColor, phoneNumber)
    SSN }->\mathrm{ name, age
    age }->\mathrm{ hairColor
Iteration 1: Person
SSN+ = SSN, name, age, hairColor
Decompose into: P(SSN, name, age, hairColor)
    Phone(SSN, phoneNumber)
Iteration 2: P
age+ = age, hairColor
Decompose: People(SSN, name, age)
    Hair(age, hairColor)
    Phone(SSN, phoneNumber)
```

What are the keys?

```
R(A,B,C,D)
```


Example

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{~B} \\
& \mathrm{~B} \rightarrow \mathrm{C}
\end{aligned}
$$

What happens if in R we first pick B^{+}? Or AB_{49}^{+}?

Decompositions in General

$\mathrm{R}_{1}=$ projection of R on $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}$
$\mathrm{R}_{2}=$ projection of R on $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}, \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

Theory of Decomposition

- Sometimes it is correct:

Lossless decomposition

Incorrect Decomposition

- Sometimes it is not:

Decompositions in General

$$
\text { If } \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{~B}_{1}, \ldots, \mathrm{~B}_{\mathrm{m}}
$$

Then the decomposition is lossless

Note: don't need $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}} \rightarrow \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{p}}$

