
1

Lecture 19:
Data Storage and Indexes

Monday, May 14, 2007

2

Final Exam

• Will reschedule to Tuesday, June 5th, in the
morning (exact time TBD)

• If you have serious conflicts, send me email

3

Outline

• Representing data elements (12)

• Index structures (13.1, 13.2)

• B-trees (13.3)

4

Files and Tables

• A disk = a sequence of blocks

• A file = a subsequence of blocks, usually
contiguous

• Need to store tables/records/indexes in
files/block

5

Representing Data Elements

• Relational database elements:

• A tuple is represented as a record
• The table is a sequence of records

CREATE TABLE Product (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

CREATE TABLEProduct (

pid INT PRIMARY KEY,
name CHAR(20),
description VARCHAR(200),
maker CHAR(10) REFERENCES Company(name)

)

6

Issues

• Represent attributes inside the records

• Represent the records inside the blocs

7

Record Formats: Fixed Length

• Information about field types same for all
records in a file; stored in system catalogs.

• Finding i’th field requires scan of record.
• Note the importance of schema information!

Base address (B)

L1 L2 L3 L4

pid name descr maker

Address = B+L1+L2

8

Record Header

L1 L2 L3 L4

To schema

length

timestamp

Need the header because:
•The schema may change

for a while new+old may coexist
•Records from different relations may coexist

header

pid name descr maker

9

Variable Length Records

L1 L2 L3 L4

Other header information

length

Place the fixed fields first: F1
Then the variable length fields: F2, F3, F4
Null values take 2 bytes only
Sometimes they take 0 bytes (when at the end)

header pid name descr maker

10

Storing Records in Blocks

• Blocks have fixed size (typically 4k – 8k)

R1R2R3

BLOCK

R4

11

BLOB

• Binary large objects

• Supported by modern database systems

• E.g. images, sounds, etc.

• Storage: attempt to cluster blocks together

CLOB = character large objec

• Supports only restricted operations

12

File Types

• Unsorted (heap)

• Sorted (e.g. by pid)

13

Modifications: Insertion

• File is unsorted: add it to the end (easy ☺)

• File is sorted:
– Is there space in the right block ?

• Yes: we are lucky, store it there

– Is there space in a neighboring block ?
• Look 1-2 blocks to the left/right, shift records

– If anything else fails, create overflow block

14

Overflow Blocks

• After a while the file starts being dominated
by overflow blocks: time to reorganize

Blockn-1 Blockn Blockn+1

Overflow

15

Modifications: Deletions

• Free space in block, shift records

• May be able to eliminate an overflow block

• Can never really eliminate the record,
because others may point to it
– Place a tombstone instead (a NULL record)

How can we point to a record in an RDBMS ?

16

Modifications: Updates

• If new record is shorter than previous, easy ☺

• If it is longer, need to shift records, create
overflow blocks

17

Pointers

Logical pointer to a record consists of:

• Logical block number

• An offset in the block’s header

We use pointers in Indexes and in Log entries

Note: review what a pointer in C is

Indexes

• An index on a file speeds up selections on the
search key fields for the index.
– Any subset of the fields of a relation can be the search

key for an index on the relation.

– Search key is not the same as key(minimal set of fields
that uniquely identify a record in a relation).

• An index contains a collection of data entries, and
supports efficient retrieval of all data entries with
a given key value k.

19

Index Classification

• Clustered/unclustered
– Clustered = records close in the index are close in the data; same as

saying that the table is ordered by the index key

– Unclustered = records close in the index may be far in the data

• Primary/secondary:
– Interpretation 1:

• Primary = is over attributes part of the primary

• Secondary = cannot reorder data

– Interpretation 2: means the same as clustered/unclustured

• B+ tree or Hash table

20

Clustered Index

• File is sorted on the index attribute

• Only one per table

40

30

20

10

80

70

60

50

20

10

40

30

60

50

80

70

21

Unclustered Index

• Several per table

20

20

10

10

30

30

30

20

30

20

20

30

20

10

30

10

Clustered vs. Unclustered Index

Data entries
(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

23

B+ Trees

• Search trees

• Idea in B Trees:
– make 1 node = 1 block

• Idea in B+ Trees:
– Make leaves into a linked list (range queries are

easier)

24

• Parameter d = the degree

• Each node has >= d and <= 2d keys (except root)

• Each leaf has >=d and <= 2d keys:

B+ Trees Basics

24012030

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

605040

40 50 60

Next leaf

25

B+ Tree Example

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

26

B+ Tree Design

• How large d ?

• Example:
– Key size = 4 bytes

– Pointer size = 8 bytes

– Block size = 4096 byes

• 2d x 4 + (2d+1) x 8 <= 4096

• d = 170

27

Searching a B+ Tree

• Exact key values:
– Start at the root

– Proceed down, to the leaf

• Range queries:
– As above

– Then sequential traversal

Select name
From people
Where age = 25

Selectname
Frompeople
Whereage = 25

Select name
From people
Where 20 <= age
and age <= 30

Selectname
Frompeople
Where20 <= age
and age <= 30

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%.
– average fanout = 133

• Typical capacities:
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 records

• Can often hold top levels in buffer pool:
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 MBytes

29

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert
• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

• If leaf, keep K3 too in right node
• When root splits, new root has 1 key only

p5

K5

P4P3P2P1

K4K2 K3

P0

K1

P2P1

K2

P0

K1

p5P4

K5

P3

K4

parent
K3

parent

30

Insertion in a B+ Tree

80

6020 120 140100

15 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

31

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

After insertion

32

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 5030 4020 6560 85 9080

10 15 18 20 30 40 50 60 65 80 85 9019

Now insert 25

33

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After insertion

50

34

Insertion in a B+ Tree

80

6020 120 140100

1915 1810 504025 3020 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

But now have to split !

50

35

Insertion in a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

After the split

50

40 5030

36

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 30 40 60 65 80 85 9019

Delete 30

50

40 5030

37

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

After deleting 30

50

5040

May change to
40, or not

38

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 2520 6560 85 9080

10 15 18 20 25 40 60 65 80 85 9019

Now delete 25

50

5040

39

Deletion from a B+ Tree

80

30 6020 120 140100

1915 1810 20 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

After deleting 25
Need to rebalance
Rotate

50

5040

40

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 40 60 65 80 85 9019

Now delete 40

50

5040

41

Deletion from a B+ Tree

80

30 6019 120 140100

15 1810 2019 6560 85 9080

10 15 18 20 60 65 80 85 9019

After deleting 40
Rotation not possible
Need to mergenodes

50

50

42

Deletion from a B+ Tree

80

6019 120 140100

15 1810 20 5019 6560 85 9080

10 15 18 20 60 65 80 85 9019

Final tree

50

43

Summary on B+ Trees

• Default index structure on most DBMS

• Very effective at answering ‘point’ queries:
productName = ‘gizmo’

• Effective for range queries:
50 < price AND price < 100

• Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

