Lecture 21:
 Query Execution

Friday, May 18, 2007

Outline

- Hash-tables (13.4)
- Query execution: 15.1-15.5

Architecture of a Database Engine

Logical Algebra Operators

- Union, intersection, difference
- Selection σ
- Projection Π
- Join $|\mathrm{x}|$
- Duplicate elimination δ
- Grouping γ
- Sorting τ

Physical Operators

Will learn today and the following lectures:

- Join:
- Main-memory hash based join
- Block-based nested-loop join
- Partitioned hash-based join
- Merge-join
- Index-join
- Group-by / Duplicate-elimination:
-

Question in Class

Logical operator:
Product(pname, cname) $|\times|$ Company(cname, city)

Propose three physical operators for the join, assuming the tables are in main memory:
1.
2.
3.

Question in Class

Product(pname, cname) $|\mathbf{x}|$ Company(cname, city)

- 1000000 products
- 1000 companies

How much time do the following physical operators take if the data is in main memory?

- Nested loop join
- \quad Sort and merge = merge-join
- Hash join
time $=$
time $=$
time $=$

Cost Parameters

The cost of an operation = total number of I/Os
result assumed to be delivered in main memory
Cost parameters:

- $\mathrm{B}(\mathrm{R})=$ number of blocks for relation R
- $T(\mathrm{R})=$ number of tuples in relation R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ number of distinct values of attribute a
- $\mathrm{M}=$ size of main memory buffer pool, in blocks

Cost Parameters

- Clustered table R:
- Blocks consists only of records from this table
- B(R) << T(R)
- Unclustered table R:
- Its records are placed on blocks with other tables
$-\mathrm{B}(\mathrm{R}) \approx \mathrm{T}(\mathrm{R})$
- When a is a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})=\mathrm{T}(\mathrm{R})$
- When a is not a key, $\mathrm{V}(\mathrm{R}, \mathrm{a})$

Selection and Projection

Selection $\sigma(\mathrm{R})$, projection $\Pi(\mathrm{R})$

- Both are tuple-at-a-time algorithms
- Cost: B(R)

Hash Tables

- Key data structure used in many operators
- May also be used for indexes, as alternative to B+trees
- Recall basics:
- There are n buckets
- A hash function $\mathrm{f}(\mathrm{k})$ maps a key k to $\{0,1, \ldots, \mathrm{n}-1\}$
- Store in bucket $f(k)$ a pointer to record with key k
- Secondary storage: bucket = block, use overflow blocks when needed

Hash Table Example

- Assume 1 bucket (block) stores 2 keys + pointers
- $\mathrm{h}(\mathrm{e})=0$
- $h(b)=h(f)=1$
- $h(g)=2$
- $h(a)=h(c)=3$

Here: $\mathrm{h}(\mathrm{x})=\mathrm{x} \bmod 4$

Searching in a Hash Table

- Search for a:
- Compute h(a)=3
- Read bucket 3
- 1 disk access

Insertion in Hash Table

- Place in right bucket, if space
- E.g. $h(d)=2$

Insertion in Hash Table

- Create overflow block, if no space
- E.g. $h(k)=1$
- More over- 3 flow blocks
 may be needed

Hash Table Performance

- Excellent, if no overflow blocks
- Degrades considerably when number of keys exceeds the number of buckets (I.e. many overflow blocks).

Main Memory Hash Join

Hash join: $\mathrm{R}|\mathrm{x}| \mathrm{S}$

- Scan S, build buckets in main memory
- Then scan R and join
- Cost: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})$
- Assumption: $\mathrm{B}(\mathrm{S})<=\mathrm{M}$

Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Hash table in main memory
- Cost: B(R)
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}$

Grouping

Grouping:

Product(name, department, quantity)
$\gamma_{\text {department, sum(quantity) }}($ Product $) \rightarrow$
Answer(department, sum)

Main memory hash table Question: How?

Nested Loop Joins

- Tuple-based nested loop $R \bowtie S$

for each tuple r in R do for each tuple s in S do if r and s join then output (r, s)

- Cost: $T(R) B(S)$ when S is clustered
- Cost: $T(R) T(S)$ when S is unclustered

Nested Loop Joins

- We can be much more clever
- Question: how would you compute the join in the following cases? What is the cost ?
$-B(R)=1000, B(S)=2, M=4$
$-B(R)=1000, B(S)=3, M=4$
$-B(R)=1000, B(S)=6, M=4$

Block-Based Nested-loop Join

for each (M-2) blocks bs of S do
for each block br of R do
for each tuple s in $b s$
for each tuple r in $b r$ do
if " r and s join" then output(r,s)

Block-Based Nested-loop Join

Block-Based Nested-loop Join

- Cost:
- Read S once: cost B(S)
- Outer loop runs $\mathrm{B}(\mathrm{S}) /(\mathrm{M}-2)$ times, and each time need to read R : costs $\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Total cost: $\mathrm{B}(\mathrm{S})+\mathrm{B}(\mathrm{S}) \mathrm{B}(\mathrm{R}) /(\mathrm{M}-2)$
- Notice: it is better to iterate over the smaller relation first
- $\mathrm{R}|\mathrm{x}| \mathrm{S}: \mathrm{R}=$ outer relation, $\mathrm{S}=$ inner relation

Index Based Join

- $\mathrm{R}>\mathrm{S}$
- Assume S has an index on the join attribute for each tuple r in R do lookup the tuple(s) s in S using the index output (r,s)

Index Based Join

Cost (Assuming R is clustered):

- If index is clustered: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$
- If index is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- Clustered index on $\mathrm{a}: \operatorname{cost} \mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- Unclustered index on a: cost $\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- We have seen that this is like a join

Index Based Selection

- Example: | | $B(R)=2000$ | |
| :--- | :--- | :--- |
| | $T(R)=100,000$ | cost of $\sigma_{a=v}(R)=$? |
- Table scan (assuming R is clustered):
- $\mathrm{B}(\mathrm{R})=2,000 \mathrm{I} / \mathrm{Os}$
- Index based selection:
- If index is clustered: $\mathrm{B}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})=100 \mathrm{I} / \mathrm{Os}$
- If index is unclustered: $\mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})=5,000 \mathrm{I} / \mathrm{Os}$
- Lesson: don't build unclustered indexes when $\mathrm{V}(\mathrm{R}, \mathrm{a})$ is small!

Operations on Very Large Tables

- Partitioned hash algorithms
- Merge-sort algorithms

Partitioned Hash Algorithms

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. $\mathrm{B}(\mathrm{R}) / \mathrm{M}$

- Does each bucket fit in main memory ?
- Yes if $B(R) / M<=M$, i.e. $B(R)<=M^{2}$

Duplicate Elimination

- Recall: $\delta(\mathrm{R})=$ duplicate elimination
- Step 1. Partition R into buckets
- Step 2. Apply δ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $B(R)<=M^{2}$

Grouping

- Recall: $\gamma(\mathrm{R})=$ grouping and aggregation
- Step 1. Partition R into buckets
- Step 2. Apply γ to each bucket (may read in main memory)
- Cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Partitioned Hash Join

R |x| S

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Hash-Join

- Partition both relations using hash fn \mathbf{h} : R tuples in partition i will only match S tuples in partition i.
* Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Partitioned Hash Join

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (\mathrm{B}(\mathrm{R}), \mathrm{B}(\mathrm{S}))<=\mathrm{M}^{2}$

External Sorting

- Problem:
- Sort a file of size B with memory M
- Where we need this:
- ORDER BY in SQL queries
- Several physical operators
- Bulk loading of B+-tree indexes.
- Will discuss only 2-pass sorting, for when $\mathrm{B}<\mathrm{M}^{2}$

External Merge-Sort: Step 1

- Phase one: load M bytes in memory, sort

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $\mathrm{M}(\mathrm{M}-1) \approx \mathrm{M}^{2}$

If $\mathrm{B}<=\mathrm{M}^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 \mathrm{~B}(\mathrm{R})$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Duplicate Elimination

Duplicate elimination $\delta(\mathrm{R})$

- Idea: do a two step merge sort, but change one of the steps
- Question in class: which step needs to be changed and how?
- $\mathrm{Cost}=3 \mathrm{~B}(\mathrm{R})$
- Assumption: $\mathrm{B}(\delta(\mathrm{R}))<=\mathrm{M}^{2}$

Grouping

Grouping: $\gamma_{\mathrm{a}, \text { sum(b) }}(\mathrm{R})$

- Same as before: sort, then compute the sum(b) for each group of a's
- Total cost: 3B(R)
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Merge-Join

Join $\mathrm{R}|\mathrm{x}| \mathrm{S}$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

$M_{1}=B(R) / M$ runs for R
$M_{2}=B(S) / M$ runs for S
If $\mathrm{B}<=\mathrm{M}^{2}$ then we are done

Two-Pass Algorithms Based on Sorting

Join R |x| S

- If the number of tuples in R matching those in S is small (or vice versa) we can compute the join during the merge phase
- Total cost: 3B(R)+3B(S)
- Assumption: $\mathrm{B}(\mathrm{R})+\mathrm{B}(\mathrm{S})<=\mathrm{M}^{2}$

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $\mathrm{B}(\mathrm{R})+\mathrm{T}(\mathrm{R}) \mathrm{B}(\mathrm{S}) / \mathrm{V}(\mathrm{S}, \mathrm{a})$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: 3B(R)+3B(S
$-B(R)+B(S)<=M^{2}$

