Lecture 22: Query Optimization

Wednesday, May 23, 2007 to Wednesday, May 30, 2007

Outline

- An example
- Query optimization: algebraic laws 16.2
- Cost-based optimization 16.5, 16.6
- Cost estimation: 16.4

Product(pname, maker), Company(cname, city)

Select Product.pname
From Product, Company
Where Product.maker=Company.cname
and Company.city = "Seattle"

• How do we execute this query ?

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: **Product**.<u>pname</u>, **Company**.<u>cname</u> Unclustered index: **Product**.maker, **Company**.city

Logical Plan:

Physical plan 1:

Physical plans 2a and 2b:

T(Company) / V(Company, city)

Plan 1: T(**Company**)/V(**Company**,city) × T(**Product**)/V(**Product**,maker) Plan 2a: B(**Company**) + 3B(**Product**) Plan 2b: B(**Company**) + T(**Product**)

T(Company) = 5,000B(Company) = 500M = 100T(Product) = 100,000B(Product) = 1,000

We may assume V(**Product**, maker) \approx T(**Company**) (why ?)

• Case 1: V(**Company**, city) \approx T(**Company**)

V(Company,city) = 2,000

• Case 2: V(**Company**, city) << T(**Company**)

V(Company,city) = 20

Which Plan is Best?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker) Plan 2a: B(Company) + 3B(Product) Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

Lessons

- Need to consider several physical plan
 even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
 - need to have *statistics* over the data
 - the B's, the T's, the V's

Query Optimzation

- Have a SQL query Q
- Create a plan P

- Find equivalent plans P = P' = P'' = ...
- Choose the "cheapest".

Logical Query Plan

Logical Query Plan

The three components of an optimizer

We need three things in an optimizer:

- Algebraic laws
- An optimization algorithm
- A cost estimator

Algebraic Laws (incomplete list)

- Commutative and Associative Laws $R \cup S = S \cup R, \ R \cup (S \cup T) = (R \cup S) \cup T$ $R |\times| S = S |\times| R, \ R |\times| (S |\times| T) = (R |\times| S) |\times| T$
- Distributive Laws $R \mid \times \mid (S \cup T) = (R \mid \times \mid S) \cup (R \mid \times \mid T)$

Algebraic Laws (incomplete list)

- Laws involving selection: $\sigma_{C AND C'}(R) = \sigma_{C}(\sigma_{C'}(R))$ $\sigma_{C OR C'}(R) = \sigma_{C}(R) \cup \sigma_{C'}(R)$
- When C involves only attributes of R

$$\sigma_{C}(R \mid \times \mid S) = \sigma_{C}(R) \mid \times \mid S$$

$$\sigma_{C}(R - S) = \sigma_{C}(R) - S$$

$$\sigma_{C}(R \mid \times \mid S) = \sigma_{C}(R) \mid \times \mid S$$

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G) $\sigma_{F=3}(R |\times|_{D=E} S) = ?$ $\sigma_{A=5 \text{ AND } G=9}(R |\times|_{D=E} S) = ?$

Algebraic Laws

• Laws involving projections $\Pi_{M}(R \mid \times \mid S) = \Pi_{M}(\Pi_{P}(R) \mid \times \mid \Pi_{Q}(S))$ $\Pi_{M}(\Pi_{N}(R)) = \Pi_{M,N}(R)$

• Example R(A,B,C,D), S(E, F, G) $\Pi_{A,B,G}(R |\times|_{D=E} S) = \Pi_{?}(\Pi_{?}(R) |\times|_{D=E} \Pi_{?}(S))$

Algebraic Laws

- Laws involving grouping and aggregation: $\delta(\gamma_{A, agg(B)}(R)) = \gamma_{A, agg(B)}(R)$ $\gamma_{A, agg(B)}(\delta(R)) = \gamma_{A, agg(B)}(R)$ if agg is "duplicate insensitive"
- Which of the following are "duplicate insensitive"? sum, count, avg, min, max

$$\begin{array}{l} \gamma_{A, \operatorname{agg}(D)}(R(A,B) \mid \times \mid_{B=C} S(C,D)) = \\ \gamma_{A, \operatorname{agg}(D)}(R(A,B) \mid \times \mid_{B=C} (\gamma_{C, \operatorname{agg}(D)} S(C,D))) \end{array}$$

Cost-based Optimizations

- Main idea: apply algebraic laws, until estimated cost is minimal
- Practically: start from partial plans, introduce operators one by one
 Will see in a few slides
- Problem: there are too many ways to apply the laws, hence too many (partial) plans

Cost-based Optimizations

Approaches:

- **Top-down**: the partial plan is a top fragment of the logical plan
- **Bottom up**: the partial plan is a bottom fragment of the logical plan

Originally proposed in System R (the first research prototype for a relational database system -- late 70s)

• Only handles single block queries:

SELECT list FROM list WHERE $cond_1 AND cond_2 AND \dots AND cond_k$

- Heuristics: selections down, projections up
- Dynamic programming: *join reordering*

Join Trees

- R1 $|\times|$ R2 $|\times|$ $|\times|$ Rn
- Join tree:

- A plan = a join tree
- A partial plan = a subtree of a join tree

Types of Join Trees

• Left deep:

Types of Join Trees

• Bushy:

Types of Join Trees

• Right deep:

- Given: a query $R1 | \times | R2 | \times | \dots | \times | Rn$
- Assume we have a function cost() that gives us the cost of every join tree
- Find the best join tree for the query

- Idea: for each subset of {R1, ..., Rn}, compute the best plan for that subset
- In increasing order of set cardinality:
 - Step 1: for {R1}, {R2}, ..., {Rn}
 - Step 2: for {R1,R2}, {R1,R3}, ..., {Rn-1, Rn}
 - ... Stop n: for (D1
 - Step n: for $\{R1, ..., Rn\}$
- It is a bottom-up strategy
- A subset of {R1, ..., Rn} is also called a *subquery*

- For each subquery Q ⊆{R1, ..., Rn} compute the following:
 - Size(Q)
 - A best plan for Q: Plan(Q)
 - The cost of that plan: Cost(Q)

- **Step 1**: For each $\{R_i\}$ do:
 - $-\operatorname{Size}(\{R_i\}) = B(R_i)$
 - $\operatorname{Plan}(\{R_i\}) = R_i$
 - $\text{Cost}(\{R_i\}) = (\text{cost of scanning } R_i)$

- Step i: For each Q ⊆{R₁, ..., R_n} of cardinality i do:
 - Compute Size(Q) (later...)
 - For every pair of subqueries Q', Q''
 s.t. Q = Q' ∪ Q''
 compute cost(Plan(Q') |×| Plan(Q''))
 - Cost(Q) = the smallest such cost
 - Plan(Q) = the corresponding plan

• Return $Plan(\{R_1, ..., R_n\})$

To illustrate, we will make the following simplifications:

- $Cost(P_1 |x| P_2) = Cost(P_1) + Cost(P_2) + size(intermediate result(s))$
- Intermediate results:
 - If $P_1 = a$ join, then the size of the intermediate result is size(P_1), otherwise the size is 0
 - Similarly for P₂
- Cost of a scan = 0

- Example:
- Cost(R5 |x| R7) = 0 (no intermediate results)
- $\operatorname{Cost}((\operatorname{R2}|X|\operatorname{R1})|X|\operatorname{R7})$ = $\operatorname{Cost}(\operatorname{R2}|X|\operatorname{R1}) + \operatorname{Cost}(\operatorname{R7}) + \operatorname{size}(\operatorname{R2}|X|\operatorname{R1})$ = $\operatorname{size}(\operatorname{R2}|X|\operatorname{R1})$

- Relations: R, S, T, U
- Number of tuples: 2000, 5000, 3000, 1000
- Size estimation: T(A |x| B) = 0.01*T(A)*T(B)

Subquery	Size	Cost	Plan
RS			
RT			
RU			
ST			
SU			
TU			
RST			
RSU			
RTU			
STU			
RSTU			

Subquery	Size	Cost	Plan
RS	100k	0	RS
RT	60k	0	RT
RU	20k	0 RU	
ST	150k	0	ST
SU	50k	0	SU
TU	30k	0	TU
RST	3M	60k	(RT)S
RSU	1M	20k	(RU)S
RTU	0.6M	20k	(RU)T
STU	1.5M	30k	(TU)S
RSTU	30M	60k+50k=110k	(RT)(SU)

Reducing the Search Space

- Left-linear trees v.s. Bushy trees
- Trees without cartesian product

Example: $R(A,B) |\times| S(B,C) |\times| T(C,D)$

Plan: $(R(A,B) |\times| T(C,D)) |\times| S(B,C)$ has a cartesian product – most query optimizers will not consider it

Dynamic Programming: Summary

- Handles only join queries:
 - Selections are pushed down (i.e. early)
 - Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
 - Left linear joins may reduce time
 - Non-cartesian products may reduce time further

Rule-Based Optimizers

- *Extensible* collection of rules Rule = Algebraic law with a direction
- Algorithm for firing these rules
 Generate many alternative plans, in some order
 Prune by cost
- Volcano (later SQL Sever)
- Starburst (later DB2)

Completing the Physical Query Plan

- Choose algorithm to implement each operator
 - Need to account for more than cost:
 - How much memory do we have ?
 - Are the input operand(s) sorted ?
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Materialize Intermediate Results Between Operators

HashTable \leftarrow S repeat read(R, x) y \leftarrow join(HashTable, x) write(V1, y)

HashTable \leftarrow T repeat read(V1, y) $z \leftarrow join(HashTable, y)$ write(V2, z)

HashTable \leftarrow U repeat read(V2, z) $u \leftarrow join(HashTable, z)$ write(Answer, u)

Materialize Intermediate Results Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan ?
 - Cost =
- How much main memory do we need ?

– M =

Pipeline Between Operators

HashTable1 \leftarrow S HashTable2 \leftarrow T HashTable3 \leftarrow U repeat read(R, x) $y \leftarrow$ join(HashTable1, x) $z \leftarrow$ join(HashTable2, y) $u \leftarrow$ join(HashTable3, z) write(Answer, u)

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

- What is the total cost of the plan ?
 - Cost =
- How much main memory do we need ?

– M =

Pipeline in Bushy Trees

• Logical plan is:

• Main memory M = 101 buffers

Naïve evaluation:

- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Smarter:

- Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
- Step 2: hash S on x into 100 buckets; to disk
- Step 3: read each R_i in memory (50 buffer) join with S_i (1 buffer); hash result on y into 50 buckets (50 buffers) -- here we *pipeline*
- Cost so far: 3B(R) + 3B(S)

Continuing:

- How large are the 50 buckets on y? Answer: k/50.
- If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
- Step 4: read U from disk, hash on y and join with memory
- Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Continuing:

- If $50 < k \le 5000$ then send the 50 buckets in Step 3 to disk
 - Each bucket has size $k/50 \le 100$
- Step 4: partition U into 50 buckets
- Step 5: read each partition and join in memory
- Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

Continuing:

- If k > 5000 then materialize instead of pipeline
- 2 partitioned hash-joins
- Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

Summary:

- If $k \le 50$, cost = 55,000
- If 50 < k <=5000,
- cost = 75,000 + 2k
- If k > 5000, cost = 75,000 + 4k

The problem: Given an expression E, compute T(E) and V(E, A)

- This is hard without computing E
- Will 'estimate' them instead

Estimating the size of a projection

- Easy: $T(\Pi_L(R)) = T(R)$
- This is because a projection doesn't eliminate duplicates

Estimating the size of a selection

- $S = \sigma_{A=c}(R)$
 - T(S) san be anything from 0 to T(R) V(R,A) + 1
 - Estimate: T(S) = T(R)/V(R,A)
 - When V(R,A) is not available, estimate T(S) = T(R)/10
- $S = \sigma_{A < c}(R)$
 - T(S) can be anything from 0 to T(R)
 - Estimate: T(S) = (c Low(R, A))/(High(R,A) Low(R,A))T(R)
 - When Low, High unavailable, estimate T(S) = T(R)/3

Estimating the size of a natural join, R $\left|\times\right|_{A}$ S

- When the set of A values are disjoint, then $T(R |\times|_A S) = 0$
- When A is a key in S and a foreign key in R, then $T(R |\times|_A S) = T(R)$
- When A has a unique value, the same in R and S, then $T(R |\times|_A S) = T(R) T(S)$

Assumptions:

- <u>Containment of values</u>: if V(R,A) <= V(S,A), then the set of A values of R is included in the set of A values of S
 - Note: this indeed holds when A is a foreign key in R, and a key in S
- <u>Preservation of values</u>: for any other attribute B, $V(R |\times|_A S, B) = V(R, B)$ (or V(S, B))

Assume $V(R,A) \leq V(S,A)$

- Then each tuple t in R joins *some* tuple(s) in S
 - How many ?
 - On average T(S)/V(S,A)
 - t will contribute T(S)/V(S,A) tuples in R $|\times|_A S$
- Hence $T(R |\times|_A S) = T(R) T(S) / V(S,A)$

In general: $T(R |\times|_A S) = T(R) T(S) / max(V(R,A),V(S,A))$

Example:

- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,A) = 200
- How large is $R |\times|_A S$?

Answer: $T(R |x|_A S) = 10000 \ 20000/200 = 1M$

Joins on more than one attribute:

• $T(R |X|_{A,B} S) =$

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(ssn, name, salary, phone)

• Maintain a histogram on salary:

Salary:	020k	20k40k	40k60k	60k80k	80k100k	> 100k
Tuples	200	800	5000	12000	6500	500

• T(Employee) = 25000, but now we know the distribution

Ranks(rankName, salary)

• Estimate the size of Employee $|\times|_{Salary}$ Ranks

Employee	020k	20k40k	40k60k	60k80k	80k100k	>100k
	200	800	5000	12000	6500	500

Ranks	020k	20k40k	40k60k	60k80k	80k100k	>100k
	8	20	40	80	100	2

• Eqwidth

020	2040	4060	6080	80100
2	104	9739	152	3

• Eqdepth

044	4448	4850	5056	55100
2000	2000	2000	2000	2000