
1

Lecture 22:
Query Optimization

Wednesday, May 23, 2007 to
Wednesday, May 30, 2007

2

Outline

• An example

• Query optimization: algebraic laws 16.2

• Cost-based optimization 16.5, 16.6

• Cost estimation: 16.4

3

Example

Product(pname, maker), Company(cname, city)

• How do we execute this query ?

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and Company.city = “Seattle”

SelectProduct.pname
From Product, Company
WhereProduct.maker=Company.cname

and Company.city = “Seattle”

4

Example

Product(pname, maker), Company(cname, city)

Assume:

Clustered index: Product.pname, Company.cname

Unclustered index: Product.maker, Company.city

5

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Logical Plan:

6

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

7

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Index-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

Which one is better ??Which one is better ??

8

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

cname=maker

Physical plan 1:

Index-based
selection

Index-based
join

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

Total cost:

T(Company) / V(Company, city)

× T(Product) / V(Product, maker)

9

><

σcity=“Seattle”

Product
(pname,maker)

Company
(cname,city)

maker=cname

Physical plans 2a and 2b:

Table-
scan

Merge-join

Scan and sort (2a)
index scan (2b)

B(Company)

3B(Product)

T(Product)

No extra cost
(why ?)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

Total cost:
(2a): 3B(Product) + B(Company)
(2b): T(Product) + B(Company)

10

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) ×
T(Product)/V(Product,maker)

Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Which one is better ??Which one is better ??

It depends on the data !!It depends on the data !!

11

Example

• Case 1: V(Company, city) ≈ T(Company)

• Case 2: V(Company, city) << T(Company)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

T(Company) = 5,000 B(Company) = 500 M = 100
T(Product) = 100,000 B(Product) = 1,000

We may assume V(Product, maker) ≈ T(Company) (why ?)

V(Company,city) = 2,000V(Company,city) = 2,000

V(Company,city) = 20V(Company,city) = 20

12

Which Plan is Best ?

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Plan 1: T(Company)/V(Company,city) × T(Product)/V(Product,maker)
Plan 2a: B(Company) + 3B(Product)
Plan 2b: B(Company) + T(Product)

Case 1:

Case 2:

13

Lessons

• Need to consider several physical plan
– even for one, simple logical plan

• No magic “best” plan: depends on the data

• In order to make the right choice
– need to have statistics over the data

– the B’s, the T’s, the V’s

14

Query Optimzation

• Have a SQL query Q

• Create a plan P

• Find equivalent plans P = P’ = P’’ = …

• Choose the “cheapest”.

HOW ??

15

Logical Query Plan
SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

SELECT P.buyer
FROM Purchase P, Person Q
WHERE P.buyer=Q.name AND

P.city=‘seattle’ AND

Q.phone > ‘5430000’

Purchase Person

Buyer=name

City=‘seattle’ phone>’5430000’

buyer

σ

In class:
find a “better” plan P’

P=

Purchasse(buyer, city)
Person(name, phone)

16

Logical Query Plan

SELECT city, sum(quantity)
FROM sales
GROUP BY city
HAVING sum(quantity) < 100

SELECTcity, sum(quantity)
FROM sales
GROUP BYcity
HAVING sum(quantity) < 100

sales(product, city, quantity)

γ city, sum(quantity)→p

σ p < 100

T1(city,p)

T2(city,p)

In class:
find a “better” plan P’

Q=

P=

17

The three components of an
optimizer

We need three things in an optimizer:

• Algebraic laws

• An optimization algorithm

• A cost estimator

18

Algebraic Laws (incomplete list)

• Commutative and Associative Laws
R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T

R |×| S = S |×| R, R |×| (S |×| T) = (R |×| S) |×| T

• Distributive Laws
R |×| (S ∪ T) = (R |×| S) ∪ (R |×| T)

19

Algebraic Laws (incomplete list)

• Laws involving selection:
σ C AND C’(R) = σ C(σ C’(R))

σ C OR C’(R) = σ C(R) ∪ σ C’(R)

• When C involves only attributes of R
σ C (R |×| S) = σ C (R) |×| S

 σ C (R – S) = σ C (R) – S

σ C (R |×| S) = σ C (R) |×| S

20

Algebraic Laws

• Example: R(A, B, C, D), S(E, F, G)
σ F=3 (R |×| D=E S) = ?

σ A=5 AND G=9 (R |×| D=E S) = ?

21

Algebraic Laws

• Laws involving projections
ΠM(R |×| S) = ΠM(ΠP(R) |×| ΠQ(S))

ΠM(ΠN(R)) = ΠM,N(R)

• Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R |×| D=E S) = Π ? (Π?(R) |×| D=E Π?(S))

22

Algebraic Laws

• Laws involving grouping and aggregation:
δ(γA, agg(B)(R)) = γA, agg(B)(R)
γA, agg(B)(δ(R)) = γA, agg(B)(R) if agg is “duplicate insensitive”

• Which of the following are “duplicate insensitive”?
sum, count, avg, min, max

γA, agg(D)(R(A,B) |×| B=C S(C,D)) =
γA, agg(D)(R(A,B) |×| B=C (γC, agg(D)S(C,D)))

23

Cost-based Optimizations

• Main idea: apply algebraic laws, until
estimated cost is minimal

• Practically: start from partial plans,
introduce operators one by one
– Will see in a few slides

• Problem: there are too many ways to apply
the laws, hence too many (partial) plans

24

Cost-based Optimizations

Approaches:

• Top-down: the partial plan is a top
fragment of the logical plan

• Bottom up: the partial plan is a bottom
fragment of the logical plan

25

Dynamic Programming

Originally proposed in System R (the first research prototype
for a relational database system -- late 70s)

• Only handles single block queries:

• Heuristics: selections down, projections up

• Dynamic programming: join reordering

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

SELECT list
FROM list
WHERE cond1 AND cond2 AND . . . AND condk

26

Join Trees

• R1 |×| R2 |×| …. |×| Rn
• Join tree:

• A plan = a join tree
• A partial plan = a subtree of a join tree

R3 R1 R2 R4

27

Types of Join Trees

• Left deep:

R3 R1

R5

R2

R4

28

Types of Join Trees

• Bushy:

R3

R1

R2 R4

R5

29

Types of Join Trees

• Right deep:

R3

R1
R5

R2 R4

30

Dynamic Programming

• Given: a query R1 |×| R2 |×| … |×| Rn

• Assume we have a function cost() that gives
us the cost of every join tree

• Find the best join tree for the query

31

Dynamic Programming

• Idea: for each subset of {R1, …, Rn}, compute the
best plan for that subset

• In increasing order of set cardinality:
– Step 1: for {R1}, {R2}, …, {Rn}
– Step 2: for {R1,R2}, {R1,R3}, …, {Rn-1, Rn}
– …
– Step n: for {R1, …, Rn}

• It is a bottom-up strategy
• A subset of {R1, …, Rn} is also called a subquery

32

Dynamic Programming

• For each subquery Q ⊆{R1, …, Rn}
compute the following:
– Size(Q)

– A best plan for Q: Plan(Q)

– The cost of that plan: Cost(Q)

33

Dynamic Programming

• Step 1: For each {Ri} do:
– Size({Ri}) = B(Ri)

– Plan({Ri}) = Ri

– Cost({Ri}) = (cost of scanning Ri)

34

Dynamic Programming

• Step i: For each Q ⊆{R1, …, Rn} of
cardinality i do:
– Compute Size(Q) (later…)

– For every pair of subqueries Q’, Q’’
s.t. Q = Q’∪ Q’’
compute cost(Plan(Q’) |×| Plan(Q’’))

– Cost(Q) = the smallest such cost

– Plan(Q) = the corresponding plan

35

Dynamic Programming

• Return Plan({R1, …, Rn})

36

Dynamic Programming

To illustrate, we will make the following
simplifications:

• Cost(P1 |×| P2) = Cost(P1) + Cost(P2) +
size(intermediate result(s))

• Intermediate results:
– If P1 = a join, then the size of the intermediate result is

size(P1), otherwise the size is 0

– Similarly for P2

• Cost of a scan = 0

37

Dynamic Programming

• Example:

• Cost(R5 |×| R7) = 0 (no intermediate results)

• Cost((R2 |×| R1) |×| R7)
= Cost(R2 |×| R1) + Cost(R7) + size(R2 |×| R1)
= size(R2 |×| R1)

38

Dynamic Programming

• Relations: R, S, T, U

• Number of tuples: 2000, 5000, 3000, 1000

• Size estimation: T(A |×| B) = 0.01*T(A)*T(B)

39RSTU

STU

RTU

RSU

RST

TU

SU

ST

RU

RT

RS

PlanCostSizeSubquery

40(RT)(SU)60k+50k=110k30MRSTU

(TU)S30k1.5MSTU

(RU)T20k0.6MRTU

(RU)S20k1MRSU

(RT)S60k3MRST

TU030kTU

SU050kSU

ST0150kST

RU020kRU

RT060kRT

RS0100kRS

PlanCostSizeSubquery

41

Reducing the Search Space

• Left-linear trees v.s. Bushy trees

• Trees without cartesian product

Example: R(A,B) |×| S(B,C) |×| T(C,D)

Plan: (R(A,B) |×| T(C,D)) |×| S(B,C) has a cartesian product –
most query optimizers will not consider it

42

Dynamic Programming:
Summary

• Handles only join queries:
– Selections are pushed down (i.e. early)
– Projections are pulled up (i.e. late)

• Takes exponential time in general, BUT:
– Left linear joins may reduce time
– Non-cartesian products may reduce time further

43

Rule-Based Optimizers

• Extensible collection of rules
Rule = Algebraic law with a direction

• Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

• Volcano (later SQL Sever)
• Starburst (later DB2)

44

Completing the
Physical Query Plan

• Choose algorithm to implement each
operator
– Need to account for more than cost:

• How much memory do we have ?

• Are the input operand(s) sorted ?

• Decide for each intermediate result:
– To materialize

– To pipeline

45

Materialize Intermediate Results
Between Operators

⋈

⋈

⋈ T

R S

U

HashTable � S
repeat read(R, x)

y � join(HashTable, x)
write(V1, y)

HashTable � T
repeat read(V1, y)

z � join(HashTable, y)
write(V2, z)

HashTable � U
repeat read(V2, z)

u � join(HashTable, z)
write(Answer, u)

HashTable � S
repeat read(R, x)

y � join(HashTable, x)
write(V1, y)

HashTable � T
repeat read(V1, y)

z � join(HashTable, y)
write(V2, z)

HashTable � U
repeat read(V2, z)

u � join(HashTable, z)
write(Answer, u)

V1

V2

46

Materialize Intermediate Results
Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

47

Pipeline Between Operators

⋈

⋈

⋈ T

R S

U

HashTable1 � S
HashTable2 � T
HashTable3 � U
repeat read(R, x)

y � join(HashTable1, x)
z � join(HashTable2, y)
u � join(HashTable3, z)
write(Answer, u)

HashTable1 � S
HashTable2 � T
HashTable3 � U
repeat read(R, x)

y � join(HashTable1, x)
z � join(HashTable2, y)
u � join(HashTable3, z)
write(Answer, u)

pi
pe

lin
e

48

Pipeline Between Operators

Question in class

Given B(R), B(S), B(T), B(U)

• What is the total cost of the plan ?
– Cost =

• How much main memory do we need ?
– M =

49

Pipeline in Bushy Trees

⋈

⋈

⋈

XR S

⋈

⋈ Z

Y

⋈

V

T

⋈

I

50

Example

• Logical plan is:

• Main memory M = 101 buffers

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

51

Example

Naïve evaluation:

• 2 partitioned hash-joins

• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

52

Example

Smarter:
• Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
• Step 2: hash S on x into 100 buckets; to disk
• Step 3: read each Ri in memory (50 buffer) join with Si (1 buffer); hash result on

y into 50 buckets (50 buffers) -- here we pipeline
• Cost so far: 3B(R) + 3B(S)

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

53

Example

Continuing:
• How large are the 50 buckets on y ? Answer: k/50.
• If k <= 50 then keep all 50 buckets in Step 3 in memory, then:
• Step 4: read U from disk, hash on y and join with memory
• Total cost: 3B(R) + 3B(S) + B(U) = 55,000

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

54

Example

Continuing:
• If 50 < k <= 5000 then send the 50 buckets in Step 3 to disk

– Each bucket has size k/50 <= 100

• Step 4: partition U into 50 buckets
• Step 5: read each partition and join in memory
• Total cost: 3B(R) + 3B(S) + 2k + 3B(U) = 75,000 + 2k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

55

Example

Continuing:
• If k > 5000 then materialize instead of pipeline
• 2 partitioned hash-joins
• Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4k

R(w,x)
5,000 blocks

S(x,y)
10,000 blocks

U(y,z)
10,000 blocks

k blocks

M = 101

56

Example

Summary:

• If k <= 50, cost = 55,000

• If 50 < k <=5000, cost = 75,000 + 2k

• If k > 5000, cost = 75,000 + 4k

57

Size Estimation

The problem: Given an expression E, compute
T(E) and V(E, A)

• This is hard without computing E

• Will ‘estimate’ them instead

58

Size Estimation

Estimating the size of a projection

• Easy: T(ΠL(R)) = T(R)

• This is because a projection doesn’t
eliminate duplicates

59

Size Estimation

Estimating the size of a selection
• S = σA=c(R)

– T(S) san be anything from 0 to T(R) – V(R,A) + 1
– Estimate: T(S) = T(R)/V(R,A)
– When V(R,A) is not available, estimate T(S) = T(R)/10

• S = σA<c(R)
– T(S) can be anything from 0 to T(R)
– Estimate: T(S) = (c - Low(R, A))/(High(R,A) - Low(R,A))T(R)
– When Low, High unavailable, estimate T(S) = T(R)/3

60

Size Estimation

Estimating the size of a natural join, R |×|A S

• When the set of A values are disjoint, then
T(R |×|A S) = 0

• When A is a key in S and a foreign key in
R, then T(R |×|A S) = T(R)

• When A has a unique value, the same in R
and S, then T(R |×|A S) = T(R) T(S)

61

Size Estimation

Assumptions:

• Containment of values: if V(R,A) <= V(S,A), then the set
of A values of R is included in the set of A values of S
– Note: this indeed holds when A is a foreign key in R, and a key in

S

• Preservation of values: for any other attribute B,
V(R |×| A S, B) = V(R, B) (or V(S, B))

62

Size Estimation

Assume V(R,A) <= V(S,A)

• Then each tuple t in R joins some tuple(s) in S
– How many ?

– On average T(S)/V(S,A)

– t will contribute T(S)/V(S,A) tuples in R |×|A S

• Hence T(R |×|A S) = T(R) T(S) / V(S,A)

In general: T(R |×|A S) = T(R) T(S) / max(V(R,A),V(S,A))

63

Size Estimation

Example:

• T(R) = 10000, T(S) = 20000

• V(R,A) = 100, V(S,A) = 200

• How large is R |×| A S ?

Answer: T(R |×|A S) = 10000 20000/200 = 1M

64

Size Estimation

Joins on more than one attribute:

• T(R |×|A,B S) =

T(R) T(S)/(max(V(R,A),V(S,A))*max(V(R,B),V(S,B)))

65

Histograms

• Statistics on data maintained by the
RDBMS

• Makes size estimation much more accurate
(hence, cost estimations are more accurate)

66

Histograms

Employee(ssn, name, salary, phone)
• Maintain a histogram on salary:

• T(Employee) = 25000, but now we know the distribution

500

> 100k

6500

80k..100k

120005000800200Tuples

60k..80k40k..60k20k..40k0..20kSalary:

67

Histograms

Ranks(rankName, salary)

• Estimate the size of Employee |×| SalaryRanks

500

> 100k

6500

80k..100k

120005000800200

60k..80k40k..60k20k..40k0..20kEmployee

2

> 100k

100

80k..100k

8040208

60k..80k40k..60k20k..40k0..20kRanks

68

Histograms

• Eqwidth

• Eqdepth

315297391042

80..10060..8040..6020..400..20

20002000200020002000

55..10050..5648..5044..480..44

