Introduction to Database Systems CSE 444

Lecture 12 Transactions: concurrency control (part 2)

Outline

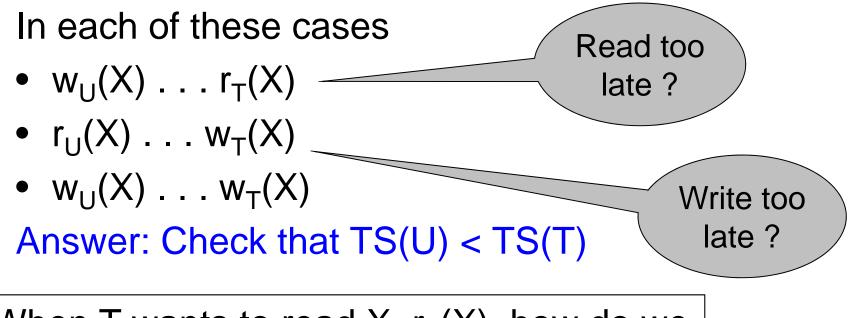
- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)

Timestamps

 Each transaction receives a unique timestamp TS(T)

Could be:

- The system's clock
- A unique counter, incremented by the scheduler


Timestamps

Main invariant:

The timestamp order defines the serialization order of the transaction

Main Idea

• For any two conflicting actions, ensure that their order is the serialized order:

When T wants to read X, $r_T(X)$, how do we know U, and TS(U) ?

Timestamps

With each element X, associate

- RT(X) = the highest timestamp of any transaction that read X
- WT(X) = the highest timestamp of any transaction that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

If 1 element = 1 page,

these are associated with each page X in the buffer pool

Time-based Scheduling

- Note: simple version that ignores the commit bit
- Transaction wants to read element X
 - If TS(T) < WT(X) abort
 - Else read and update RT(X) to larger of TS(T) or RT(X)
- Transaction wants to write element X
 - If TS(T) < RT(X) abort
 - Else if TS(T) < WT(X) ignore write & continue (Thomas Write Rule)
 - Otherwise, write X and update WT(X) to TS(T)

Read too late:

• T wants to read X, and TS(T) < WT(X)

Need to rollback T !

Write too late:

• T wants to write X, and TS(T) < RT(X)

Need to rollback T !

Write too late, but we can still handle it:

 T wants to write X, and TS(T) >= RT(X) but WT(X) > TS(T)

START(T) ... START(V) ... $w_V(X) \dots w_T(X)$

Don't write X at all ! (but see later...)

More Problems

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... $w_U(X)$... $(r_T(X))$... ABORT(U)

If C(X)=false, T needs to wait for it to become true

More Problems

Write dirty data:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

START(T) ... START(U)... $w_U(X)$... $(w_T(X)$... ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

- When a transaction T requests r(X) or w(X), the scheduler examines RT(X), WT(X), C(X), and decides one of:
- To grant the request, or
- To rollback T (and restart with later timestamp)
- To delay T until C(X) = true

Timestamp-based Scheduling

RULES including commit bit

- There are 4 long rules in Sec. 18.8.4
- You should be able to derive them yourself, based on the previous slides
- Make sure you understand them !

READING ASSIGNMENT: 18.8.4

Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: $X_{t}, X_{t-1}, X_{t-2}, \ldots$

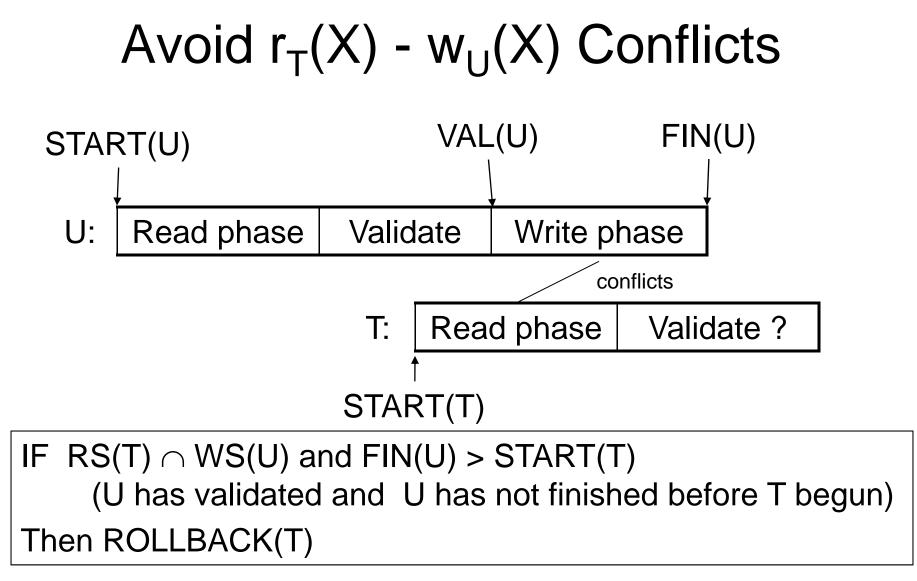
$$TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > ...$$

• Let T read an older version, with appropriate timestamp

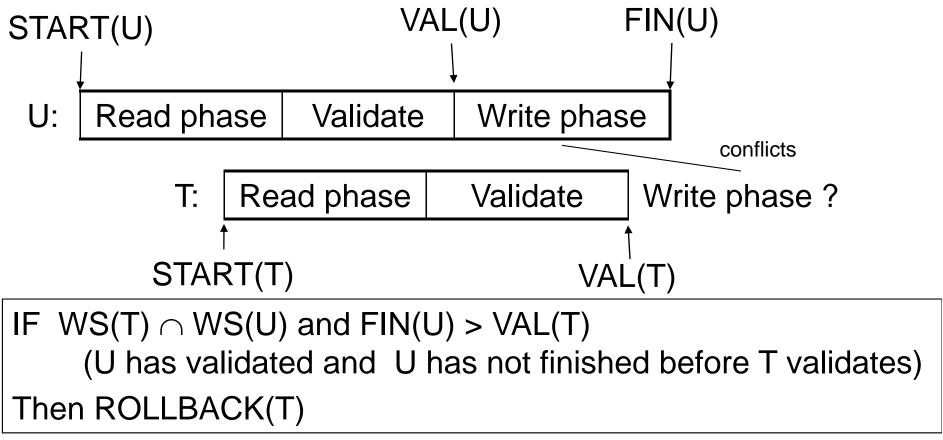
- When w_T(X) occurs, create a new version, denoted X_t where t = TS(T)
- When r_T(X) occurs, find most recent version X_t such that t < TS(T) Notes:
 - WT(X_t) = t and it never changes
 - RT(X_t) must still be maintained to check legality of writes
- Can delete X_t if we have a later version X_{t1} and all active transactions T have TS(T) > t1

Tradeoffs

- Locks:
 - Great when there are many conflicts
 - Poor when there are few conflicts
- Timestamps
 - Poor when there are many conflicts (rollbacks)
 - Great when there are few conflicts
- Compromise
 - READ ONLY transactions \rightarrow timestamps
 - READ/WRITE transactions \rightarrow locks


Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)


Concurrency Control by Validation

- Each transaction T defines a <u>read set</u> RS(T) and a <u>write set</u> WS(T)
- Each transaction proceeds in three phases:
 - Read all elements in RS(T). Time = START(T)
 - Validate (may need to rollback). Time = VAL(T)
 - Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

Avoid
$$w_T(X) - w_U(X)$$
 Conflicts

