Introduction to Database Systems CSE 444

Lecture 17: Relational Algebra

Outline

- Motivation and sets vs. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
- [Old edition: 5.1 through 5.4]
- These book sections go over relational operators

The WHAT and the HOW

- In SQL, we write WHAT we want to get form the data
- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the Relational Algebra

SQL = WHAT

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

$$
\begin{aligned}
& \text { SELECT DISTINCT x.name, z.name } \\
& \text { FROM Product x, Purchase y, Customer z } \\
& \text { WHERE x.pid }=\text { y.pid and y.cid }=\text { z.cid and } \\
& \text { x.price }>100 \text { and } z . \text { city }=\text { 'Seattle' }
\end{aligned}
$$

It's clear WHAT we want, unclear HOW to get it

Relational Algebra $=$ HOW

Relational Algebra $=$ HOW

The order is now clearly specified:

- Iterate over PRODUCT...
- ...join with PURCHASE...
- ...join with CUSTOMER...
- ...select tuples with Price>100 and City='Seattle’...
- ...eliminate duplicates...
- ...and that's the final answer!

Sets v.s. Bags

- Sets: $\{a, b, c\},\{a, d, e, f\},\{ \}, \ldots$
- Bags: $\{a, a, b, c\},\{b, b, b, b, b\}, \ldots$

Relational Algebra has two flavors:

- Over sets: theoretically elegant but limited
- Over bags: needed for SQL queries + more efficient
- Example: Compute average price of all products

We discuss set semantics

- We mention bag semantics only where needed

Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
- [Old edition: 5.1 through 5.4]
- These book sections go over relational operators

Relational Algebra

- Query language associated with relational model
- Queries specified in an operational manner
- A query gives a step-by-step procedure
- Relational operators
- Take one or two relation instances as argument
- Return one relation instance as result
- Easy to compose into relational algebra expressions

Relational Algebra (1/3)

Five basic operators:

- Union (\cup) and Set difference (-)
- Selection: : $\sigma_{\text {condition }}(\mathrm{S})$
- Condition is Boolean combination (\wedge, \vee) of terms
- Term is: attribute op constant, attr. op attr.
- Op is: <, <=, =, $\neq,>=$, or >
- Projection: $\pi_{\text {list-of-attributes }}(\mathrm{S})$
- Cross-product or cartesian product (\times)

Relational Algebra (2/3)

Derived or auxiliary operators:

- Intersection (\cap), Division (R/S)
- Join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Variations of joins
- Natural, equijoin, theta-join
- Outer join and semi-join
- Rename $\rho_{\text {B1, }, \ldots, \mathrm{Bn}}$ (S)

Relational Algebra (3/3)

Extensions for bags

- Duplicate elimination: δ
- Group by: γ [Same symbol as aggregation]
- Partitions tuples of a relation into "groups"
- Sorting: τ

Other extensions

- Aggregation: γ (min, max, sum, average, count)

Union and Difference

- R1 \cup R2
- Example:
- ActiveEmployees \cup RetiredEmployees
- R1-R2
- Example:
- AllEmployees - RetiredEmployees

Be careful when applying to bags!

What about Intersection?

- It is a derived operator
- R1 \cap R2 = R1 - (R1 - R2)
- Also expressed as a join (will see later)
- Example
- UnionizedEmployees \cap RetiredEmployees

Selection

- Returns all tuples that satisfy a condition
- Notation: $\sigma_{c}(R)$
- Examples
- $\sigma_{\text {Salary } 40000}$ (Employee)
- $\sigma_{\text {name }}=$ "Smith" $(E m p l o y e e)$
- The condition c can be
- Boolean combination (\wedge, \vee) of terms
- Term is: attribute op constant, attr. op attr.
- Op is: <, <=, =, $\neq,>=$, or >

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{\text {Salary }}$ 40000 $($ Employee $)$

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Projection

- Eliminates columns
- Notation: $\Pi_{\text {A1, ..,An }}(R)$
- Example: project social-security number and names:
- $\Pi_{\text {SSN, Name }}$ (Employee)
- Output schema: Answer(SSN, Name)

Semantics differs over set or over bags

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

$\Pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000

Set semantics: duplicate elimination automatic

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

$\Pi_{\text {Name,Salary }}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Bag semantics: no duplicate elimination; need explicit δ

Selection \& Projection Examples

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	p3	98120	lung
4	p4	98120	heart

$\sigma_{\text {disease='heart' }}($ Patient $)$

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

$\pi_{\text {zip,disease }}$ (Patient)

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

$\pi_{\text {zip }}\left(\sigma_{\text {disease='heart' }}(\right.$ Patient $\left.)\right)$

zip
98120
98125

Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: R1 \times R2
- Example:
- Employee \times Dependents
- Rare in practice; mainly used to express joins

Cartesian Product Example

Employee	
Name	SSN
John	999999999
Tony	777777777

Dependents	
EmployeeSSN	Dname
999999999	Emily
777777777	Joe

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	999999999	999999999	Emily
John	999999999	777777777	Joe
Tony	777777777	999999999	Emily
Tony	777777777	777777777	Joe

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{\text {B1 }, \ldots, \mathrm{Bn}}(\mathrm{R})$
- Example:
- $\rho_{\text {LastName, }}$ SocSocNo (Employee)
- Output schema:

Answer(LastName, SocSocNo)

Renaming Example

Employee	
Name	SSN
John	999999999
Tony	777777777

$\rho_{\text {LastName, SocSocNo }}$ (Employee)

LastName	SocSocNo
John	999999999
Tony	777777777

Different Types of Join

- Theta-join: $R \bowtie_{\theta} S=\sigma_{\theta}(R \times S)$
- Join of R and S with a join condition θ
- Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S=\pi_{A}\left(\sigma_{\theta}(R \times S)\right)$
- Join condition θ consists only of equalities
- Projection π_{A} drops all redundant attributes
- By far most used join in practice
- Natural join: $\mathrm{R} \bowtie \mathrm{S}=\pi_{\mathrm{A}}\left(\sigma_{\theta}(\mathrm{R} \times \mathrm{S})\right)$
- Equijoin
- Equality on all fields with same name in R and in S

Theta-Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

$P \bowtie_{\text {P.age=J.age }} \wedge$ P.zip=J.zip \wedge P.age $<50 \mathrm{~J}$

P.age	P.zip	disease	job	J.age	J.zip
20	98120	flu	cashier	20	98120

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

$P \bowtie_{\text {P.age=J.age }} J$

age	P.zip	disease	job	J.zip
54	98125	heart	lawyer	98125
20	98120	flu	cashier	98120

Natural Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

$P \bowtie J$

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier

So Which Join Is It?

- When we write $R \bowtie S$ we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

- Outer join
- Include tuples with no matches in the output
- Use NULL values for missing attributes
- Variants
- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu
33	98120	lung

$P \bowtie V$

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

Semijoin

- $R \bowtie S=\Pi_{A 1, \ldots, A n}(R \bowtie S)$
- Where A_{1}, \ldots, A_{n} are the attributes in R
- Example:
- Employee \ltimes Dependents

Semijoins in Distributed Databases

- Semijoins are used in distributed databases

$$
\mathrm{R}=\text { Employee } \nless \mathrm{T} \rightleftarrows \mathrm{~T}=\Pi_{\mathrm{SSN}}\left(\sigma_{\text {age }>71}(\text { Dependents })\right)
$$

Complex RA Expressions

Example of Algebra Queries

Q1: Jobs of patients who have heart disease $\pi_{\text {job }}\left(\right.$ AnnonJob ${ }_{\bowtie}\left(\sigma_{\text {disease='heart' }}(\right.$ AnonPatient $\left.)\right)$

More Examples

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize, pcolor)
Supply(sno,pno,qty,price)
```

Q2: Name of supplier of parts with size greater than 10
$\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}\right.$ (Part))

Q3: Name of supplier of red parts or parts with size greater than 10 $\pi_{\text {sname }}\left(\right.$ Supplier \bowtie Supply $\bowtie\left(\sigma_{\text {psize>10 }}(\right.$ Part $) \cup \sigma_{\text {pcolor='red' }}($ Part $\left.\left.)\right)\right)$

RA Expressions vs. Programs

- An Algebra Expression is like a program
- Several operations
- Strictly specified order
- But Algebra expressions have limitations

RA and Transitive Closure

- Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write Java program

Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
- [Old edition: 5.1 through 5.4]
- These book sections go over relational operators

From SQL to RA

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

SELECT DISTINCT x.name, z.name FROM Product x, Purchase y, Customer z
WHERE x.pid $=$ y.pid and y.cid $=$ y.cid and x.price > 100 and z.city = 'Seattle'

From SQL to RA

An Equivalent Expression

Query optimization $=$ finding cheaper equivalent expressions

Operators on Bags

- Duplicate elimination δ
- Grouping γ
- Sorting τ

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

T1, T2, T3 = temporary tables

sales(product, city, price)

Non-monontone Queries (at home!)

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

```
SELECT DISTINCT z.store
FROM Customer z
WHERE z.city=`Seattle’ AND
    not exists (select *
        from Product x, Purchase y
        where x.pid= y.pid
        and y.cid = z.cid
        and x.price < 100)
```

