Section 3

CSE 444 Introduction to Databases

Announcements

- Project 1 was due yesterday (10/14/2009)
- Homework 1 was released, due 10/28/2009

From Last time...

DELETE FROM Table WHERE column = value

Don't forget the WHERE clause

- Otherwise this empties the content of the table

Today

- E/R Diagrams (Brief overview)
 - English requirements to E/R Diagram
 - E/R diagram to Tables
- BCNF
 - FDs, Closure
 - Examples

E/R basics

- Know and symbols
 - Entity
 - Attributes
 - Relationship
 - Arrows
- ISA
 - Difference from OOP in C++/Java

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

- Each project is worked on by one or more professors
- Professors can work on multiple projects

- Each project is worked on by one or more professors
- Professors can work on multiple projects

Convert to tables

• Professor(<u>ssn</u>, age, rank, specialty)

- Project(pid, sponsor, start_date, end_date, budget)
- Work_in(<u>ssn</u>, <u>pid</u>)
- Manages(<u>ssn</u>, <u>pid</u>)

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke

Convert to tables

• Professor(<u>ssn</u>, age, rank, specialty)

- Project(<u>pid</u>, sponsor, start_date, end_date, budget, <u>ssn</u>)
- Work_in(<u>ssn</u>, <u>pid</u>)

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke

Convert to tables

Data Anomalies

• Redundancy is Bad, why?

- Redundancy
- Update
- Delete

Functional Dependencies

R	Α	В	С	D	E	F
	a 1	b1	c1	d1	e1	f1
	a 1	b1	c2	d1	e2	f3
	a2	b1	c2	d3	e2	f3
	<u>α</u> 3	b2	c3	d4	e3	f2
	a2	b1	c3	d3	e4	f4
	a4	b1	c1	d5	e1	f1

• Dependencies for this relation:

$$- A \rightarrow B$$

$$- A \rightarrow D$$

- $\text{ B,C} \rightarrow \text{E,F}$
- Do they all hold in this instance of the relation R?

- How would you go by finding these in an unknown table?
- Functional dependencies are specified by the database programmer based on the intended meaning of the attributes.

Keys

- Keys, what?
 - Superkey
 - Кеу

BCNF

• What is it?

BCNF Decomposition Algorithm

BCNF_Decompose(R)

```
find X s.t.: X \neq X^+ \neq [all attributes]
```

if (not found) then "R is in BCNF"

<u>let</u> $Y = X^+ - X$ **<u>let</u>** $Z = [all attributes] - X^+$ decompose R into R1(X \cup Y) and R2(X \cup Z) continue to decompose recursively R1 and R2

A table R(A,B,C,D,E) : Example 1

A table R(A,B,C,D,E) : Example 1

A table R(A,B,C,D) : Example 2

A table S(A,B,C,D,E) : Example 3

A table S(A,B,C,D,E) : Example 3

A table S(A,B,C,D,E) : Example 3

