Section 3

CSE 444
Introduction to Databases

Announcements

- Project 1 was due yesterday (10/14/2009)
- Homework 1 was released, due 10/28/2009

From Last time...

- DELETE FROM Table WHERE column = value
- Don't forget the WHERE clause
- Otherwise this empties the content of the table

Today

- E/R Diagrams (Brief overview)
- English requirements to E/R Diagram
$-E / R$ diagram to Tables
- BCNF
- FDs, Closure
- Examples

E/R basics

- Know and symbols
- Entity
- Attributes
- Relationship
- Arrows
- ISA
- Difference from OOP in C++/Java

E / R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

E / R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

E / R (English requirements to diagram)

- Each project is managed by one professor (principal investigator)
- Professor can manage multiple projects

E / R (English requirements to diagram)

- Each project is worked on by one or more professors
- Professors can work on multiple projects

E / R (English requirements to diagram)

- Each project is worked on by one or more professors
- Professors can work on multiple projects

Convert to tables

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget)
- Work_in(ssn, pid)
- Manages(ssn, pid)

Convert to tables

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget, ssn)
- Work_in(ssn, pid)

Example courtesy: Database Management Systems, 3rd E, R. Ramakrishnan and J. Gehrke

Convert to tables


```
CREATE TABLE Professor (
ssn INT PRIMARY KEY,
age INT,
urank VARCHAR(30),
specialty VARCHAR(30)
);
CREATE TABLE Project (
    pid INT PRIMARY KEY,
    sponser INT,
    start_date DATE,
    end_date DATE,
    budget FLOAT,
    ssn INT REFERENCES Professor(ssn)
```

- Professor(ssn, age, rank, specialty)
- Project(pid, sponsor, start_date, end_date, budget, ssh)
- Work_in(ssn, bid)

Data Anomalies

- Redundancy is Bad, why?
- Redundancy
- Update
- Delete

Functional Dependencies

R	A	B	C	D	E	F
	$a 1$	$b 1$	$c 1$	$d 1$	$e 1$	$f 1$
	$a 1$	$b 1$	$c 2$	$d 1$	$e 2$	$f 3$
	$a 2$	$b 1$	$c 2$	$d 3$	$e 2$	$f 3$
	$a 3$	$b 2$	$c 3$	$d 4$	$e 3$	$f 2$
	$a 2$	$b 1$	$c 3$	$d 3$	$e 4$	$f 4$
$a 4$	$b 1$	$c 1$	$d 5$	$e 1$	$f 1$	

- Dependencies for this relation:
$-\mathrm{A} \rightarrow \mathrm{B}$
$-\mathrm{A} \rightarrow \mathrm{D}$
- B,C \rightarrow E,F
- Do they all hold in this instance of the relation R ?
- How would you go by finding these in an unknown table?
- Functional dependencies are specified by the database programmer based on the intended meaning of the attributes.

Keys

- Keys, what?
- Superkey
- Key

BCNF

- What is it?

BCNF Decomposition Algorithm

BCNF_Decompose(R)

find X s.t.: $X \neq X^{+} \neq$[all attributes]
if (not found) then " R is in BCNF"
let $Y=X^{+}-X$
let $Z=[$ all attributes $]-X^{+}$
decompose R into $R 1(X \cup Y)$ and $R 2(X \cup Z)$ continue to decompose recursively R 1 and R 2

A table R(A,B,C,D,E) : Example 1

Consider the following FDs:
$\cdot \mathrm{CD} \rightarrow \mathrm{E} \quad$ BAD
$\cdot \mathrm{D} \rightarrow \mathrm{B} \quad \mathrm{BAD}$
$\cdot \mathrm{A} \rightarrow \mathrm{CD}$

Which one are
the bad
dependences?

$$
\mathrm{CD}+=\mathrm{BCDE}
$$

CD is not a superkey

D is not a superkey
$\mathrm{A}+=\mathrm{ABCDE}$
A is a superkey

Note: a set of attributes X is a superkey if $X+=A B C D E$

A table $R(A, B, C, D, E)$: Example 1

Consider the following FDs:
$\begin{array}{ll}\text { - } C D \rightarrow E & B A D \\ \text { - } D \rightarrow B & B A D \\ \text { - } A \rightarrow C D & \end{array}$

$$
\begin{gathered}
\mathrm{R}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}, \mathrm{E}) \\
{[\mathrm{CD}+=\mathrm{BCDE} \neq \mathrm{ABCDE}]}
\end{gathered}
$$

- $C D \rightarrow E$	$B A D$
- $D \rightarrow B$	$B A D$
- $A \rightarrow C D$	

Note: a set of attributes X is a superkey if $X+=A B C D E$

A table $R(A, B, C, D)$: Example 2

Consider the following FDs:

- $C \rightarrow D, C+=A D \quad B A D$
- $\mathrm{C} \rightarrow \mathrm{A}, \mathrm{C}+=\mathrm{AD} \quad \mathrm{BAD}$
- $B \rightarrow C, B+=A B C D$

Note: a set of attributes X is a superkey if $X+=A B C D E$

A table S(A,B,C,D,E) : Example 3

$1^{\text {st }}$ Solution:

$$
\begin{gathered}
S(A, B, C, D, E) \\
{[A B+=A B C D \neq A B C D E]}
\end{gathered}
$$

Consider the following FDs:

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD} \quad \mathrm{BAD}$
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD} \quad \mathrm{BAD}$

$$
\begin{gathered}
S 2(A, B, C, D) \\
{[B+=B D \neq A B C D]}
\end{gathered}
$$

Note: a set of attributes X is a superkey if $X+=A B C D E$

A table S(A,B,C,D,E) : Example 3

$2^{\text {nd }}$ Solution:

$$
\begin{gathered}
S(A, B, C, D, E) \\
{[D E+=C D E \neq A B C D E]}
\end{gathered}
$$

Consider the following FDs:

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD}$ BAD
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $\mathrm{B} \rightarrow \mathrm{D}, \mathrm{B}+=\mathrm{BD} \quad \mathrm{BAD}$

$$
\begin{gathered}
S 2(A, B, D, E) \\
{[B+=B D \neq A B D E]}
\end{gathered}
$$

Note: a set of attributes X is a superkey if $X+=A B C D E$

A table S(A,B,C,D,E) : Example 3

3rd Solution:

$$
\begin{gathered}
S(A, B, C, D, E) \\
{[B+=B D \neq A B C D E]}
\end{gathered}
$$

Consider the following FDs:

- $\mathrm{AB} \rightarrow \mathrm{C}, \mathrm{AB}+=\mathrm{ABCD}$ BAD
- $\mathrm{DE} \rightarrow \mathrm{C}, \mathrm{DE}+=\mathrm{CDE} \quad \mathrm{BAD}$
- $B \rightarrow D, B+=B D$

BAD

S3(B,D)
[BCNF]

Note: a set of attributes X is a superkey if $X+=A B C D E$

