Introduction to Database Systems CSE 444

Lecture 5: E/R Diagrams

Outline

- E/R diagrams
 - Sec. 4.1- 4.4 [Old edition: Chapter 2]
- From E/R diagrams to relations
 - Sec. 4.5 and 4.6 [Old edition: Sec. 3.2 and 3.3]

Database Design

- Why do we need it?
 - Need a way to model real world entities in terms of relations
 - Not easy to go from real-world entities to a database schema
- Consider issues such as:
 - What entities to model
 - How entities are related
 - What constraints exist in the domain
 - How to achieve **good** designs
- Several formalisms exists
 - We discuss E/R diagrams

Database Design Process

Conceptual Schema Design

Keys in E/R Diagrams

• Every entity set must have a key

What is a Relation ?

- A mathematical definition:
 if A, B are sets, then a relation R is a subset of A × B
- A={1,2,3}, B={a,b,c,d}, A × B = {(1,a),(1,b), ..., (3,d)} R = {(1,a), (1,c), (3,b)} A=

• makes is a subset of **Product** × **Company**:

Multiplicity of E/R Relations

а one-one: L 2 b 3 с many-one 1 a 2 b 3 С many-many • 2 3

Multi-way Relationships

How do we model a purchase relationship between buyers, products and stores?

Can still model as a mathematical set (how ?)

12

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store

Arrows in Multiway Relationships

Q: What does the arrow mean ?

A: A given person buys a given product from at most one store AND every store sells to every person at most one product

Arrows in Multiway Relationships

Q: How do we say that every person shops at at most one store ?

A: Cannot. This is the best approximation. (Why only approximation ?)

Converting Multi-way Relationships to Binary

3. Design Principles

Moral: be faithful to the specifications of the app!

Design Principles: What's Wrong?

From E/R Diagrams to Relational Schema

- Entity set \rightarrow relation
- Relationship \rightarrow relation

Entity Set to Relation

Product(name, category, price)

name	category	price	
gizmo	gadgets	\$19.99	

Relationships to Relations

Relationships to Relations

No need for Makes. Modify Product:

name	category	price	Start Year	companyName	_
gizmo	gadgets	19.99	1963	gizmoWorks	- 23

Modeling Subclasses

Some objects in a class may be special

- define a new class
- better: define a *subclass*

So --- we define subclasses in E/R

Understanding Subclasses

• Think in terms of records:

– Product

field1 field2

- SoftwareProduct
- EducationalProduct

Difference between OO and E/R inheritance

• OO: classes are disjoint (same for Java, C++)

Difference between OO and E/R inheritance

• E/R: entity sets overlap

Difference between OO and E/R inheritance

No need for multiple inheritance in E/R

We have three entity sets, but four different kinds of objects.

Modeling UnionTypes With Subclasses

FurniturePiece

Say: each piece of furniture is owned either by a person, or by a company

Modeling Union Types with Subclasses

Say: each piece of furniture is owned either by a person, or by a company

Solution 1. Acceptable, imperfect (What's wrong ?)

Modeling Union Types with Subclasses

Solution 2: better, more laborious

Constraints in E/R Diagrams

Finding constraints is part of the modeling process. Commonly used constraints:

Keys: social security number uniquely identifies a person.

Single-value constraints: a person can have only one father.

Referential integrity constraints: if you work for a company, it must exist in the database.

Other constraints: peoples' ages are between 0 and 150.

Keys in E/R Diagrams

Single Value Constraints

Referential Integrity Constraints

Other Constraints

What does this mean ?

Weak Entity Sets

Entity sets are weak when their key comes from other classes to which they are related.

Notice: we encountered this when converting multiway relationships to binary relationships

Handling Weak Entity Sets

Convert to a relational schema

University(<u>name</u>) Team(<u>number,universityName</u>,sport) No need to represent affiliation separately