
Introduction to Database Systems
CSE 444

Lecture 8: Transactions in SQL

CSE 444 - Summer 2009 1

Where We Are

• What we have already learned
– Relational model of data
– Data manipulation language: SQL
– Views and constraints
– Database design (E/R diagrams & normalization)

• But what if I want to update my data?
• Today: transactions in SQL (Sec. 6.6)

– Old edition: Sec. 8.6

2CSE 444 - Summer 2009

Transactions
P bl A li ti t f l• Problem: An application must perform several
writes and reads to the database, as a unit

• Solution: multiple actions of the application are
bundled into one unit called Transaction

• Very powerful concepty
– Database transactions (that’s where they started)
– Transaction monitors

T ti l
3

– Transactional memory
CSE 444 - Summer 2009

Turing Awards toTuring Awards to
Database Researchers

• Charles Bachman 1973 for CODASYL

• Edgar Codd 1981 for relational databases

• Jim Gray 1998 for transactions

CSE 444 - Summer 2009 4

The World Without Transactions

• Just write applications that talk to databases

• Rely on operating systems for scheduling,
and for concurrency control

• What can go wrong ? g g
– Several famous anomalies
– Other anomalies are possible (but not famous)

5CSE 444 - Summer 2009

Lost Updates

Client 1:
UPDATE Customer

Client 2:
UPDATE CustomerUPDATE Customer

SET rentals= rentals + 1
WHERE cname= ‘Fred’

UPDATE Customer
SET rentals= rentals + 1
WHERE cname= ‘Fred’

Two people attempt to rent two movies for Fred,
from two different terminals. What happens ?

6CSE 444 - Summer 2009

Unrepeatable Read
Client 1: rent-a-movie
x = SELECT rentals FROM Cust

Unrepeatable Read

x SELECT rentals FROM Cust
WHERE cname= ‘Fred’

if (< 5)
Client 2: rent-a-movie
x = SELECT rentals FROM Custif (x < 5)

{ UPDATE Cust
SET rentals= rentals + 1

x = SELECT rentals FROM Cust
WHERE cname= ‘Fred’

WHERE cname= ‘Fred’ }
else println(“Denied !”)

if (x < 5)
{ UPDATE Cust

SET rentals= rentals + 1SET rentals rentals 1
WHERE cname= ‘Fred’ }

else println(“Denied !”)

7
What’s wrong ?

CSE 444 - Summer 2009

Inconsistent Read

Client 1: move from gizmo gadget

Inconsistent Read

Client 1: move from gizmo gadget

UPDATE Products
SET tit tit + 5SET quantity = quantity + 5
WHERE product = ‘gizmo’ Client 2: inventory….

UPDATE Products

SELECT sum(quantity)
FROM Product

UPDATE Products
SET quantity = quantity - 5
WHERE product = ‘gadget’ What’s wrong ?

8CSE 444 - Summer 2009

What s wrong ?

Inconsistent ReadInconsistent Read
Client 1: rent-two-movies
x = SELECT rentals FROM Cust Cli t 2 t ix = SELECT rentals FROM Cust

WHERE cname= ‘Fred’

if (x < 4) { /* movie 1 */

Client 2: rent-a-movie
x = SELECT rentals FROM Cust

WHERE cname= ‘Fred’
if (x < 4) { / movie 1… /

UPDATE Cust
SET rentals= rentals + 1
WHERE cname= ‘Fred’

if (x < 5)
{ UPDATE Cust

SET rentals= rentals + 1

/* ….and movie 2 */
UPDATE Cust

SET rentals rentals + 1
WHERE cname= ‘Fred’ }

else println(“Denied !”)

SET rentals= rentals + 1
WHERE cname= ‘Fred’

}
l i tl (“D i d !”) What’s wrong ?

9

else println(“Denied !”) What s wrong ?
CSE 444 - Summer 2009

Dirty ReadsDirty ReadsClient 1: transfer $100 acc1 acc2
X = Account1.balance
Account2.balance += 100Account2.balance 100

If (X>=100) Account1.balance -=100
else { /* rollback ! */else { /* rollback ! */

account2.balance -= 100
println(“Denied !”) Client 1: transfer $100 acc2 acc3Client 1: transfer $100 acc2 acc3

Y = Account2.balance
Account3.balance += 100

If (Y>=100) Account2.balance -=100
else { /* rollback ! */What’s wrong ?

10

{
account3.balance -= 100
println(“Denied !”)

Some Famous anomalies

• Dirty read (Write-Read conflict)
– T reads data written by T’ while T’ has not committed

What can go wrong: T’ writes more data (which T has already– What can go wrong: T’ writes more data (which T has already
read) or T’ aborts

– Inconsistent read: T sees some but not all changes made by T’

• Unrepeatable read (Read-Write conflict)
– T reads the same value twice and gets two different results

• Lost update (Write-Write conflict)• Lost update (Write-Write conflict)
– Two tasks T and T’ both modify the same data
– T and T’ both commit
– Final state shows effects of only T, but not of T’

11CSE 444 - Summer 2009

Protection against crashes

Client 1:

UPDATE Accounts
SET balance= balance - 500
WHERE ‘F d’WHERE name= ‘Fred’

UPDATE Accounts
Crash !

What’s wrong ?
SET balance = balance + 500
WHERE name= ‘Joe’

12CSE 444 - Summer 2009

Enter Transactions

• Concurrency control
– The famous anomalies and more…

• Recovery

13CSE 444 - Summer 2009

Definition

• A transaction = one or more operations,
which reflect a single real-world transition
– Happens completely or not at all– Happens completely or not at all

• Examples p
– Transfer money between accounts
– Rent a movie; return a rented movie
– Purchase a group of productsPurchase a group of products
– Register for a class (either waitlisted or allocated)

B i t ti ll i bl
14

• By using transactions, all previous problems
disappear CSE 444 - Summer 2009

Transactions in Applications

START TRANSACTION May be omitted:
first SQL query

starts txn
[SQL statements]

COMMIT ROLLBACK (ABORT)

starts txn

COMMIT or ROLLBACK (=ABORT)

15CSE 444 - Summer 2009

Transactions in Ad-hoc SQL

• Default: each statement = one transaction

16CSE 444 - Summer 2009

Revised CodeRevised Code
Client 1: rent-a-movie
START TRANSACTION

Client 2: rent-a-movie
START TRANSACTIONSTART TRANSACTION

x = SELECT rentals
FROM Cust
WHERE ‘F d’

START TRANSACTION
x = SELECT rentals

FROM Cust
WHERE ‘F d’WHERE cname= ‘Fred’ WHERE cname= ‘Fred’

if (x < 5)
{ UPDATE Cust

SET rentals= rentals + 1

if (x < 5)
{ UPDATE Cust

SET rentals= rentals + 1SET rentals rentals 1
WHERE cname= ‘Fred’ }

else println(“Denied !”)
COMMIT

SET rentals rentals 1
WHERE cname= ‘Fred’ }

else println(“Denied !”)
COMMIT

17Now it works like a charm

COMMIT COMMIT

Revised Code
Client 1: transfer $100 acc1 acc2Client 1: transfer $100 acc1 acc2
START TRANSACTION
X = Account1.balance; Account2.balance += 100

If (X>=100) { Account1.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)else {println(Denied ! ; ROLLBACK)

Client 1: transfer $100 acc2 acc3
START TRANSACTIONSTART TRANSACTION
X = Account2.balance; Account3.balance += 100

18

If (X>=100) { Account2.balance -=100; COMMIT }
else {println(“Denied !”; ROLLBACK)

Using Transactions
Ver eas to seVery easy to use:
• START TRANSACTION

COMMIT• COMMIT
• ROLLBACK

But what EXACTLY do they mean ?
• Popular culture: ACID
• Underlying theory: serializability

19CSE 444 - Summer 2009

Transaction PropertiesTransaction Properties
ACID

• Atomic
– State shows either all the effects of txn, or none of them

• Consistent• Consistent
– Txn moves from a state where integrity holds, to

another where integrity holds
I l t d• Isolated
– Effect of txns is the same as txns running one after

another (ie looks like batch mode)()
• Durable

– Once a txn has committed, its effects remain in the
database

20

database

CSE 444 - Summer 2009

ACID: Atomicity

• Two possible outcomes for a transaction
– It commits: all the changes are made
– It aborts: no changes are made

• That is, transaction’s activities are all or
nothing

21CSE 444 - Summer 2009

ACID: Consistency

• The state of the tables is restricted by
integrity constraints

A t b i i– Account number is unique
– Stock amount can’t be negative
– Sum of debits and of credits is 0Sum of debits and of credits is 0

• Constraints may be explicit or implicit
• How consistency is achieved:y

– Programmer makes sure a txn takes a consistent
state to a consistent state
The system makes sure that the tnx is atomic

22

– The system makes sure that the tnx is atomic
CSE 444 - Summer 2009

ACID: Isolation

• A transaction executes concurrently with
other transaction

• Isolation: the effect is as if each transaction
executes in isolation of the others

23CSE 444 - Summer 2009

ACID: Durability

• The effect of a transaction must continue to
exists after the transaction, or the whole
program has terminated

• Means: write data to disk

24CSE 444 - Summer 2009

ROLLBACK

• If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

• This causes the system to “abort” the
t titransaction
– The database returns to the state without any of

the previous changes made by activity of thethe previous changes made by activity of the
transaction

• App can then decide to retry or abandon or…

25

pp y

CSE 444 - Summer 2009

Reasons for Rollback

• User changes their mind (“ctl-C”/cancel)
• Explicit in program, when app program finds a

blproblem
– E.g. when the # of rented movies > max # allowed
– Use it freely in Project 2 !!– Use it freely in Project 2 !!

• System-initiated abort
– System crashy
– Housekeeping, e.g. due to timeouts

26CSE 444 - Summer 2009

