
Introduction to Database Systems
CSE 444

Lectures 13-14
Transactions: Best Practices

CSE 444 - Summer 2009 1

Today’s Outline

1. User interface:
1. Read-only transactions
2 Weak isolation levels2. Weak isolation levels
3. Transaction implementation in commercial DBMSs

2. The ARIES recovery methody
3. Snapshot Isolation

• Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

2CSE 444 - Summer 2009

READ-ONLY Transactions
Client 1: START TRANSACTION

INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0 99WHERE price < 0.99

DELETE FROM Product
WHERE price <=0.99

COMMITCOMMIT

Client 2: SET TRANSACTION READ ONLY
START TRANSACTION

Can help DBMS
improve

SELECT count(*)
FROM Product

SELECT count(*)

performance

3

SELECT count(*)
FROM SmallProduct
COMMIT CSE 444 - Summer 2009

Isolation Levels in SQL

1. “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2. “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3. “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READSET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4. Serializable transactions ACID

4
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Summer 2009

Choosing Isolation Level

• Trade-off: efficiency vs correctness

• DBMSs give user choice of level
Always read
DBMS docs!

Beware!!
• Default level is often NOT serializable

DBMS docs!

• Default level differs between DBMSs
• Some engines support subset of levels!
• Serializable may not be exactly ACID

CSE 444 - Summer 2009 5

• Serializable may not be exactly ACID

1. Isolation Level: Dirty Reads

Implementation using locks:
• “Long duration” WRITE locks

– A.k.a Strict Two Phase Locking (you knew that !)
• Do not use READ locks

– Read-only transactions are never delayed

P ibl bl di d i i dPossible problems: dirty and inconsistent reads

6CSE 444 - Summer 2009

2. Isolation Level: Read Committed

Implementation using locks:
• “Long duration” WRITE locks
• “Short duration” READ locks

– Only acquire lock while reading (not 2PL)

• Possible problems: unrepeatable reads
– When reading same element twice,
– may get two different values

7CSE 444 - Summer 2009

2. Read Committed in Java
In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
readAccount();readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

Can see a
different value

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db setAutoCommit(false);db.setAutoCommit(false);
writeAccount();
db.commit();

CSE 444 - Summer 2009 8

3. Isolation Level: Repeatable3. Isolation Level: Repeatable
Read

Implementation using locks:

• “Long duration” READ and WRITE locks
– Full Strict Two Phase Locking

• This is not serializable yet !!!

9CSE 444 - Summer 2009

3. Repeatable Read in Java
In the handout: Lecture13.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
readAccount();readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

Now sees the
same value

In the handout: Lecture13.java – Transaction 2:
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ);
db setAutoCommit(false);db.setAutoCommit(false);
writeAccount();
db.commit();

CSE 444 - Summer 2009 10

3. Repeatable Read in Java
In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
countAccounts();countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

Can see a
different count

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db setAutoCommit(false);db.setAutoCommit(false);
insertAccount();
db.commit();

CSE 444 - Summer 2009 11
Note: In PostgreSQL will still see the same count.

The Phantom Problem
“Phantom” = tuple visible only during some part of the transaction

T1:
select count(*) from R where price>20 T2:

Phantom tuple visible only during some part of the transaction

. . . .

. . . .

. . . .

. . . .

. . . .
insert into R(name,price)

values(‘Gizmo’ 50). . . .
select count(*) from R where price>20

values(Gizmo , 50)
. . . .

R1(X), R1(Y), R1(Z), W2(New), R1(X), R1(Y), R1(Z), R1(New)

The schedule is conflict serializable yet we get different counts !
12

The schedule is conflict-serializable, yet we get different counts !
CSE 444 - Summer 2009

The Phantom Problem

• The problem is in the way we model transactions:
– Fixed set of elements

• This model fails to capture insertions, because
these create new elements

• No easy solutions:
– Need “predicate locking” but how to implement it?

S l1 L k th ti l ti R (h k)– Sol1: Lock on the entire relation R (or chunks)
– Sol2: If there is an index on ‘price’, lock the index nodes

13CSE 444 - Summer 2009

4. Serializable in Java
In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
countAccounts();countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

Now should see
same count

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db setAutoCommit(false);db.setAutoCommit(false);
insertAccount();
db.commit();

CSE 444 - Summer 2009 14

Commercial Systems
DB2 Strict 2PL• DB2: Strict 2PL

• SQL Server:
St i t 2PL f t d d 4 l l f i l ti– Strict 2PL for standard 4 levels of isolation

– Multiversion concurrency control for snapshot isolation
• PostgreSQL:• PostgreSQL:

– Multiversion concurrency control
• Oracle• Oracle

– Multiversion concurrency control

CSE 444 - Summer 2009 15

Today’s Outline

1. User interface
2. The ARIES recovery method
3. Snapshot Isolation

R di M J F kli “C C t l d• Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

16CSE 444 - Summer 2009

ARIES Overview

• Undo/redo log with lots of clever details

• Physiological logging

• Each log entry has unique Log Sequence Number,
LSN

17CSE 444 - Summer 2009

Granularity in ARIES

• Physical logging for REDO (element=one page)
• Logical logging for UNDO (element=one record)g gg g ()
• Result: logs logical operations within a page
• This is called physiological loggingp y g gg g
• Why this choice?

– Must do physical REDO since cannot guarantee that db p y g
is in an action-consistent state after crash

– Must do logical undo because ARIES will only undo
l t ti (thi l f ilit t ROLLBACK)loser transactions (this also facilitates ROLLBACKs)

18CSE 444 - Summer 2009

The LSN

• Each log entry receives a unique Log
Sequence Number, LSN
– The LSN is written in the log entry
– Entries belonging to the same transaction are

chained in the log via prevLSNchained in the log via prevLSN
– LSN’s help us find the end of a circular log file:

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ? 18

19CSE 444 - Summer 2009

Aries Data Structures

• Each page on disk has pageLSN:
= LSN of the last log entry for that page

• Transaction table: each entry has lastLSN
= LSN of the last log entry for that transaction
Transaction table tracks all active transactions

• Dirty page table: each entry has recoveryLSN
= LSN of earliest log entry that made it dirty
Dirty page table tracks all dirty pages

20CSE 444 - Summer 2009

Checkpoints

• Write into the log
– Contents of transactions table
– Contents of dirty page table

• Very fast ! No waiting, no END CKPT

• But, effectiveness is limited by dirty pages
– There is a background process that periodically

d di t t di k
21

sends dirty pages to disk
CSE 444 - Summer 2009

ARIES Recovery in Three Steps
• Analysis pass• Analysis pass

– Figure out what was going on at time of crash
– List of dirty pages and running transactionsy p g g

• Redo pass (repeating history principle)
– Redo all operations, even for transactions that will not

itcommit
– Get back state at the moment of the crash

• Undo passUndo pass
– Remove effects of all uncommitted transactions
– Log changes during undo in case of another crash

d i d
22

during undo
CSE 444 - Summer 2009

ARIES Method Illustration
M b iMay be in

reverse order

23
[Franklin97]

CSE 444 - Summer 2009

Analysis Phase
• Goal

– Determine point in log where to start REDO
– Determine set of dirty pages when crashed

C ti ti t f di t• Conservative estimate of dirty pages
– Identify active transactions when crashed

• Approach
– Rebuild transactions table and dirty pages table
– Start from the latest checkpoint
– Scan the log, and update the two tables accordingly

Find oldest recoveryLSN (firstLSN) in dirty pages tables
24

– Find oldest recoveryLSN (firstLSN) in dirty pages tables
CSE 444 - Summer 2009

Redo Phase

• Goal: redo all updates since firstLSN
• For each log recordg

– If affected page is not in the Dirty Page Table then
do not update

– If affected page is in the Dirty Page Table but
recoveryLSN > LSN of record, then no update

– Else need to read the page from disk; if pageLSNElse need to read the page from disk; if pageLSN
> LSN, then no update

– Otherwise perform update

25CSE 444 - Summer 2009

Undo Phase

• Goal: undo effects of aborted transactions
• Identifies all loser transactions in trans. table
• Scan log backwards

– Undo all operations of loser transactions
– Undo each operation unconditionally
– All ops. logged with compensation log records (CLR)
– Never undo a CLR

• Look-up the UndoNextLSN and continue from there

26CSE 444 - Summer 2009

Handling Crashes during Undo

[Franklin97]

27CSE 444 - Summer 2009

Today’s Outline

1. User interface
2. The ARIES recovery method
3. Snapshot Isolation

28CSE 444 - Summer 2009

Snapshot Isolation

• A type of multiversion concurrency control algorithm
• Provides yet another level of isolation

• Very efficient, and very popular
Oracle PostgreSQL SQL Server 2005– Oracle, PostgreSQL, SQL Server 2005

• Prevents many classical anomalies BUT…
• Not serializable (!), yet ORACLE and PostgreSQL

use it even for SERIALIZABLE transactions!

29CSE 444 - Summer 2009

Snapshot Isolation Rules

• Each transactions receives a timestamp TS(T)

• Transaction T sees snapshot at time TS(T) of the database

Wh T it d t d itt t di k• When T commits, updated pages are written to disk

• Write/write conflicts resolved by “first committer wins” ruleWrite/write conflicts resolved by first committer wins rule
• Read/write conflicts are ignored

30CSE 444 - Summer 2009

Snapshot Isolation (Details)

• Multiversion concurrency control:
– Versions of X: Xt1, Xt2, Xt3, . . .

• When T reads X, return XTS(T).

• When T writes X: if other transaction updated X,
abort
– Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once we
abort T, U becomes the first committer ☺

31CSE 444 - Summer 2009

What Works and What Not

• No dirty reads (Why ?)
• No inconsistent reads (Why ?)

– A: Each transaction reads a consistent snapshot

• No lost updates (“first committer wins”)No lost updates (first committer wins)

• Moreover: no reads are ever delayed

• However: read-write conflicts not caught !

32CSE 444 - Summer 2009

Write Skew

T1:
READ(X);
if X >= 50

T2:
READ(Y);
if Y >= 50if X > 50

then Y = -50; WRITE(Y)
COMMIT

if Y > 50
then X = -50; WRITE(X)

COMMIT

In our notation:

R (X) R (Y) W (Y) W (X) C CR1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

33

Non serializable !!!

CSE 444 - Summer 2009

Write Skews Can Be Serious

• Acidicland had two viceroys, Delta and Rho
• Budget had two registers: taXes, and spendYng
• They had high taxes and low spending…

Delta: Rho:Delta:
READ(taXes);
if taXes = ‘High’

th { dY ‘R i ’

Rho:
READ(spendYng);
if spendYng = ‘Low’

th {t X ‘C t’then { spendYng = ‘Raise’;
WRITE(spendYng) }

COMMIT

then {taXes = ‘Cut’;
WRITE(taXes) }

COMMIT

34… and they ran a deficit ever since.

Questions/Discussions

• How does snapshot isolation (SI) compare to repeatable
reads and serializable?

A: SI avoids most but not all phantoms (e g write skew)– A: SI avoids most but not all phantoms (e.g., write skew)

• Note: Oracle & PostgreSQL implement it even forNote: Oracle & PostgreSQL implement it even for
isolation level SERIALIZABLE

• How can we enforce serializability at the app. level ?
– A: Use dummy writes for all reads to create write-write conflicts

35CSE 444 - Summer 2009

