
Introduction to Database Systems
CSE 444

Lecture 15: Data Storage and Indexes

CSE 444 - Summer 2009 1

Where We Are

• How to use a DBMS as a:
– Data analyst: SQL, SQL, SQL,…

Application programmer: JDBC XML– Application programmer: JDBC, XML,…
– Database administrator: tuning, triggers, security
– Massive-scale data analyst: Pig/MapReduce

• How DBMSs work:
– Transactions
– Data storage and indexing– Data storage and indexing
– Query execution

• Databases as a service

CSE 444 - Summer 2009 2

Outline

• Storage model

• Index structures (Section 14.1)
– [Old edition: 13.1 and 13.2]

• B-trees (Section 14.2)()
– [Old edition: 13.3]

CSE 444 - Summer 2009 3

Storage Model

• DBMS needs spatial and temporal control over storage
– Spatial control for performance

Temporal control for correctness and performance– Temporal control for correctness and performance
• Solution: Buffer manager inside DBMS (see past lectures)

• For spatial control, two alternatives
– Use “raw” disk device interface directly

Use OS files– Use OS files

CSE 444 - Summer 2009 4

Spatial ControlSpatial Control
Using “Raw” Disk Device Interface

• Overview
– DBMS issues low-level storage requests directly to disk device

Ad t• Advantages
– DBMS can ensure that important queries access data

sequentially
– Can provide highest performance

• Disadvantages
Requires devoting entire disks to the DBMS– Requires devoting entire disks to the DBMS

– Reduces portability as low-level disk interfaces are OS specific
– Many devices are in fact “virtual disk devices”

CSE 444 - Summer 2009 5

Spatial ControlSpatial Control
Using OS Files

• Overview
– DBMS creates one or more very large OS files

Ad t• Advantages
– Allocating large file on empty disk can yield good physical

locality

• Disadvantages
– OS can limit file size to a single disk

OS can limit the number of open file descriptors– OS can limit the number of open file descriptors
– But these drawbacks have mostly been overcome by

modern OSs

CSE 444 - Summer 2009 6

Commercial Systems

• Most commercial systems offer both alternatives
– Raw device interface for peak performance

OS files more commonly used– OS files more commonly used

• In both cases, we end-up with a DBMS file p
abstraction implemented on top of OS files or raw
device interface

CSE 444 - Summer 2009 7

Outline

• Storage model

• Index structures (Section 14.1)
– [Old edition: 13.1 and 13.2]

• B-trees (Section 14.2)()
– [Old edition: 13.3]

CSE 444 - Summer 2009 8

Database File Types

The data file can be one of:
• Heap filep

– Set of records, partitioned into blocks
– Unsorted

• Sequential file
– Sorted according to some attribute(s) called key

“key” here means something else than “primary key”

CSE 444 - Summer 2009 9

Index

• A (possibly separate) file, that allows fast
access to records in the data file given a
search key

• The index contains (key, value) pairs:
– The key = an attribute value
– The value = either a pointer to the record, or the

record itselfrecord itself

“key” (aka “search key”) again means something else

CSE 444 - Summer 2009 10

Index Classification

• Clustered/unclustered
– Clustered = records close in index are close in data
– Unclustered = records close in index may be far in data– Unclustered = records close in index may be far in data

• Primary/secondaryy y
– Meaning 1:

• Primary = is over attributes that include the primary key
• Secondary = otherwiseSecondary otherwise

– Meaning 2: means the same as clustered/unclustered

• Organization: B+ tree or Hash table
CSE 444 - Summer 2009 11

Clustered/Unclustered

• Clustered
– Index determines the location of indexed records

T i ll l t d i d i h l– Typically, clustered index is one where values are
data records (but not necessary)

• Unclustered
– Index cannot reorder data, does not determine

d t l tidata location
– In these indexes: value = pointer to data record

CSE 444 - Summer 2009 12

Clustered Index

• File is sorted on the index attribute
• Only one per tabley p

10 10

Index File Data File

20

30

40

20

30

40
50

60

70

80

50

60

70

80 13

Unclustered Index

• Several per table

10 2010

10

20

20

20

30

30

20
20

30

30

30

20

10

20
30

10

30

CSE 444 - Summer 2009 14

Clustered vs. Unclustered Index

D t t i
B+ Tree B+ Tree

Data entries
(Index File)
(Data file)

Data entries

(Data file)

Data Records Data Records
CLUSTERED UNCLUSTERED

• More commonly, in a clustered B+ Tree index,

CSE 444 - Summer 2009

data entries are data records
15

Hash-Based Index
Good for point queries but not range queries

18

18

10 21

20 20 h1(sid) = 00
h2(age) = 00

Good for point queries but not range queries

20

22

19

30 18

40 19

H1 sid

H2age

h2(age) = 01
21

21

19

50 22

60 18

H1

h1(sid) = 11

sidh2(age) = 01

70 21

80 19

()

Another example ofAnother example

CSE 444 - Summer 2009

clustered/primary indexof unclustered/secondary index
16

Outline

• Storage model

• Index structures (Section 14.1)
– [Old edition: 13.1 and 13.2]

• B-trees (Section 14.2)()
– [Old edition: 13.3]

CSE 444 - Summer 2009 17

B+ Trees

• Search trees

• Idea in B Trees
– Make 1 node = 1 block
– Keep tree balanced in height

• Idea in B+ Trees
– Make leaves into a linked list: facilitates range queries

CSE 444 - Summer 2009 18

B+ Trees Basics

• Parameter d = the degree
• Each node has d <= m <= 2d keys (except root)y (p)

30 120 240 Each node also
has m+1 pointers

• Each leaf has d <= m <= 2d keys

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

Each leaf has d < m < 2d keys
40 50 60

Next leaf

40 50 60

CSE 444 - Summer 2009
19

B+ Tree Example
d = 2 Fi d h k 40

80

d 2 Find the key 40

40 ≤ 80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

20 < 40 ≤ 60

30 < 40 ≤ 40

10 15 18 20 30 40 50 60 65 80 85 90

CSE 444 - Summer 2009 20

B+ Tree Design

• How large d ?
• Example:p

– Key size = 4 bytes
– Pointer size = 8 bytes
– Block size = 4096 bytes

• 2d x 4 + (2d+1) x 8 <= 4096
• d = 170

CSE 444 - Summer 2009 21

Searching a B+ Tree

• Exact key values:
– Start at the root Select name

From people
– Proceed down, to the leaf

From people
Where age = 25

• Range queries:
– As above

Th ti l t l

Select name
From people– Then sequential traversal From people
Where 20 <= age
and age <= 30

CSE 444 - Summer 2009 22

B+ Trees in Practice

• Typical order: 100. Typical fill-factor: 67%
– average fanout = 133

T pical capacities• Typical capacities
– Height 4: 1334 = 312,900,700 records
– Height 3: 1333 = 2,352,637 recordsHeight 3: 133 2,352,637 records

• Can often hold top levels in buffer pool
– Level 1 = 1 page = 8 Kbytes
– Level 2 = 133 pages = 1 Mbyte
– Level 3 = 17,689 pages = 133 Mbytes

CSE 444 - Summer 2009 23

Insertion in a B+ Tree

Insert (K, P)
• Find leaf where K belongs, insert

If no overflow (2d keys or less) halt• If no overflow (2d keys or less), halt
• If overflow (2d+1 keys), split node, insert in parent:

parent
K3

parent

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 P5

K3

• If leaf, keep K3 too in right node
• When root splits new root has 1 key only

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

When root splits, new root has 1 key only

CSE 444 - Summer 2009 24

Insertion in a B+ Tree
Insert K=19

80

Insert K 19

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

CSE 444 - Summer 2009 25

Insertion in a B+ Tree
After insertion

80

After insertion

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

CSE 444 - Summer 2009 26

Insertion in a B+ Tree
Now insert 25

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 9019

CSE 444 - Summer 2009 27

Insertion in a B+ Tree
After insertion

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 28

Insertion in a B+ Tree
But now have to split !

80

p

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 29

Insertion in a B+ Tree
After the split

80

p

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 9030 40 50

10 15 18 20 25 30 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 30

Deletion from a B+ Tree
Delete 30

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 9030 40 50

10 15 18 20 25 30 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 31

Deletion from a B+ Tree
After deleting 30

80

g

May change to
40, or not

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 9040 50

10 15 18 20 25 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 32

Deletion from a B+ Tree
Now delete 25

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 9040 50

10 15 18 20 25 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 33

Deletion from a B+ Tree
After deleting 25

80

g
Need to rebalance
Rotate

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 9040 50

10 15 18 20 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 34

Deletion from a B+ Tree
Now delete 40

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 9040 50

10 15 18 20 40 60 65 80 85 9019 50

CSE 444 - Summer 2009 35

Deletion from a B+ Tree
After deleting 40

80

g
Rotation not possible
Need to merge nodes

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 9050

10 15 18 20 60 65 80 85 9019 50

CSE 444 - Summer 2009 36

Deletion from a B+ Tree
Final tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 9019 50

CSE 444 - Summer 2009 37

Summary of B+ Trees

• Default index structure on most DBMS
• Very effective at answering ‘point’ queries:y g p q

productName = ‘gizmo’
• Effective for range queries:

50 < price AND price < 100
• Less effective for multirange:

50 < price < 100 AND 2 < quant < 20

CSE 444 - Summer 2009 38

Indexes in PostgreSQL

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V1_N ON V(N)

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clusteredCLUSTER V USING V2 Makes V2 clustered
CSE 444 - Summer 2009 39

