
Introduction to Database Systems
CSE 444

Lecture 19: Operator Algorithms

CSE 444 - Summer 2009 1

Why Learn About Op Algos?

• Implemented in commercial DBMSs
– DBMSs implement different subsets of known algorithms

• Good algorithms can greatly improve performance

• Need to know about physical operators to understand
query optimization

CSE 444 - Summer 2009 2

Cost Parameters

• In database systems the data is on disk
• Cost = total number of I/Os
• Parameters:

– B(R) = # of blocks (i.e., pages) for relation R
– T(R) = # of tuples in relation R
– V(R, a) = # of distinct values of attribute a

• When a is a key, V(R,a) = T(R)
• When a is not a key, V(R,a) can be anything < T(R)

• Main constraint: M = # of memory (buffer) pages

CSE 444 - Summer 2009

Main constraint: M # of memory (buffer) pages

3

Cost

• Cost of an operation = number of disk I/Os to
– Read the operands
– Compute the result

• Cost of writing the result to disk is not included
– Need to count it separately when applicable

CSE 444 - Summer 2009 4

Cost of Scanning a Table

• Result may be unsorted: B(R)
• Result needs to be sorted: 3B(R)()

– We will discuss sorting later

CSE 444 - Summer 2009 5

Outline for Today

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

– Note about readings:
• In class we will discuss only algorithms for join operator• In class, we will discuss only algorithms for join operator

(because other operators are easier)
• Read the book to get more details about these algos
• Read the book to learn about algos for other operators

CSE 444 - Summer 2009

• Read the book to learn about algos for other operators

6

Basic Join Algorithms

• Logical operator:
– Product(pname, cname) Company(cname, city)

• Propose three physical operators for the join,
assuming the tables are in main memory:
– Hash join
– Nested loop join
– Sort-merge join

CSE 444 - Summer 2009 7

Hash Join

Hash join: R S
• Scan R, build buckets in main memoryy
• Then scan S and join
• Cost: B(R) + B(S)() ()

• One-pass algorithm when B(R) <= MOne pass algorithm when B(R) M
– By “one pass”, we mean that the operator reads its

operands only once. It does not write intermediate

CSE 444 - Summer 2009

results back to disk.
8

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)
Patient Insurance Two tuples

per page

1 ‘Bob’ ‘Seattle’

Patient
2 ‘Blue’ 123

Insurance
1 Bob Seattle
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’

2 Blue 123
4 ‘Prem’ 432

4 ‘Prem’ 343
9

3 Jill Kent
4 ‘Joe’ ‘Seattle’

4 Prem 343
3 ‘GrpH’ 554

Hash Join Example
Patient Insurance

Showing

Memory M = 21 pages

pid only

Disk

1 2

Patient
2 4

Insurance
6 61 2

3 4
2 4

4 3
9 6 2 8

6 6

1 3

108 5

9 6 2 8

8 9

Hash Join Example
Step 1: Scan Patient and create hash table in memoryp y

Memory M = 21 pages
Hash h: pid % 5

Disk

1 2 43 96 85

1 2

Patient
2 4

Insurance
6 6 Input buffer

1 2
1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Input buffer

118 5

9 6 2 8

8 9

Hash Join Example
Step 2: Scan Insurance and probe into hash tablep p

Memory M = 21 pages
Hash h: pid % 5

Disk

1 2 43 96 85

1 2

Patient
2 4

Insurance
6 6 Input buffer

1 22 4
Output buffer
2 2

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Input buffer Output buffer

Write to

128 5

9 6 2 8

8 9
disk

Hash Join Example
Step 2: Scan Insurance and probe into hash tablep p

Memory M = 21 pages
Hash h: pid % 5

Disk

1 2 43 96 85

1 2

Patient
2 4

Insurance
6 6 Input buffer

1 22 4
Output buffer
4 4

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Input buffer Output buffer

138 5

9 6 2 8

8 9

Hash Join Example
Step 2: Scan Insurance and probe into hash tablep p

Memory M = 21 pages
Hash h: pid % 5

Disk

1 2 43 96 85

1 2

Patient
2 4

Insurance
6 6 Input buffer

1 24 3
Output buffer
4 4

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Input buffer Output buffer

Keep going until read all of Insurance

148 5

9 6 2 8

8 9 Cost: B(R) + B(S)

Hash Join Details
Open() {Open() {

H = newHashTable();
S.Open();
x = S.GetNext();
while (x != null) {

H.insert(x); x = S.GetNext();
}
S Cl ()S.Close();
R.Open();
buffer = [];

15

buffer = [];
}

Hash Join Details

GetNext() {
while (buffer == []) {

R G tN t()x = R.GetNext();
if (x==Null) return NULL;
buffer = H find(x);buffer = H.find(x);

}
z = buffer.first();();
buffer = buffer.rest();
return z;

16

}

Hash Join Details

Close() {
release memory (H, buffer, etc.);
R.Close()
}

17CSE 444 - Summer 2009

Nested Loop Joins
• Tuple based nested loop R S• Tuple-based nested loop R S
• R is the outer relation, S is the inner relation

ffor each tuple r in R do
for each tuple s in S do

if r and s join then output (r s)

C t B(R) T(R) B(S)

if r and s join then output (r,s)

• Cost: B(R) + T(R) B(S)
• Not quite one-pass since S is read many times

CSE 444 - Summer 2009 18

Page-at-a-time Refinement

for each page of tuples r in R do
for each page of tuples s in S dop g p

for all pairs of tuples
if r and s join then output (r,s)

• Cost: B(R) + B(R)B(S)Cost: B(R) + B(R)B(S)

CSE 444 - Summer 2009 19

Nested Loop Example

I t b ff f P ti t1 2

Disk

Input buffer for Patient

Input buffer for Insurance2 4

1 2

Patient
2 4

Insurance
6 6 Output buffer

2 2
1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Output buffer

208 5

9 6 2 8

8 9

Nested Loop Example

I t b ff f P ti t

Disk

Input buffer for Patient1 2

Input buffer for Insurance4 3

1 2

1 2

Patient
2 4

Insurance
6 6 Output buffer1 2

3 4
2 4

4 3
9 6 2 8

6 6

1 3

Output buffer

218 5

9 6 2 8

8 9

Nested Loop Example

I t b ff f P ti t

Disk

Input buffer for Patient1 2

Input buffer for Insurance2 8

1 2

1 2

Patient
2 4

Insurance
6 6 Output buffer

2 2Keep going until read
all of Insurance

Th t f t1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Output bufferThen repeat for next
page of Patient… until end of Patient

228 5

9 6 2 8

8 9 Cost: B(R) + B(R)B(S)

Sort-Merge Join

Sort-merge join: R S
• Scan R and sort in main memoryy
• Scan S and sort in main memory
• Merge R and Sg

• Cost: B(R) + B(S)Cost: B(R) B(S)
• One pass algorithm when B(S) + B(R) <= M
• Typically this is NOT a one pass algorithm

CSE 444 - Summer 2009

• Typically, this is NOT a one pass algorithm
23

Sort-Merge Join Example
Step 1: Scan Patient and sort in memory

Memory M = 21 pages

1 2 43 96 85

p y

Disk

1 2 43 96 85

1 2

Patient
2 4

Insurance
6 61 2

3 4
2 4

4 3
9 6 2 8

6 6

1 3

248 5

9 6 2 8

8 9

Sort-Merge Join Example
Step 2: Scan Insurance and sort in memory

Memory M = 21 pages

1 2 43 96 85

p y

Disk

1 2 43 96 85

1 2 3 42 3 4 6

1 2

Patient
2 4

Insurance
6 6

6 8 8 9

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

258 5

9 6 2 8

8 9

Sort-Merge Join Example
Step 3: Merge Patient and Insurance

Memory M = 21 pages

1 2 43 96 85

p g

Disk

1 2 43 96 85

1 2 3 42 3 4 6

1 2

Patient
2 4

Insurance
6 6

6 8 8 9

Output buffer
1 1

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Output buffer

268 5

9 6 2 8

8 9

Sort-Merge Join Example
Step 3: Merge Patient and Insurance

Memory M = 21 pages

1 2 43 96 85

p g

Disk

1 2 43 96 85

1 2 3 42 3 4 6

1 2

Patient
2 4

Insurance
6 6

6 8 8 9

Output buffer
2 2

1 2
3 4

2 4

4 3
9 6 2 8

6 6

1 3

Output buffer

Keep going until end of first relation

278 5

9 6 2 8

8 9

Outline for Today

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

CSE 444 - Summer 2009 28

Review: Access Methods

• Heap file
– Scan tuples one at the time

• Hash-based index
– Efficient selection on equality predicates
– Can also scan data entries in index

• Tree-based index
– Efficient selection on equality or range predicates
– Can also scan data entries in index

CSE 444 - Summer 2009 29

Index Based Selection

• Selection on equality: σa=v(R)

• V(R, a) = # of distinct values of attribute a

• Clustered index on a: cost B(R)/V(R,a)
• Unclustered index on a: cost T(R)/V(R a)Unclustered index on a: cost T(R)/V(R,a)

• Note: we ignored I/O cost for index pages
CSE 444 - Summer 2009

• Note: we ignored I/O cost for index pages
30

Index Based Selection
B(R) = 2000

• Example:
B(R) = 2000
T(R) = 100,000
V(R, a) = 20

cost of σa=v(R) = ?

• Table scan: B(R) = 2,000 I/Os
• Index based selection

– If index is clustered: B(R)/V(R,a) = 100 I/Os
– If index is unclustered: T(R)/V(R,a) = 5,000 I/Os

• Lesson
– Don’t build unclustered indexes when V(R,a) is small !

CSE 444 - Summer 2009 31

Index Nested Loop Join

R S
• Assume S has an index on the join attributej
• Iterate over R, for each tuple fetch

corresponding tuple(s) from S

• Cost:
– If index on S is clustered: B(R) + T(R)B(S) / V(S,a)
– If index on S is unclustered: B(R) + T(R)T(S) / V(S,a)

CSE 444 - Summer 2009 32

Outline for Today

• Join operator algorithms
– One-pass algorithms (Sec. 15.2 and 15.3)
– Index-based algorithms (Sec 15.6)
– Two-pass algorithms (Sec 15.4 and 15.5)

CSE 444 - Summer 2009 33

Two-Pass Algorithms

• What if data does not fit in memory?
• Need to process it in multiple passesp p p

• Two key techniquesy q
– Hashing
– Sorting

CSE 444 - Summer 2009 34

Two Pass Algorithms
Based on HashingBased on Hashing

• Idea: partition a relation R into buckets, on disk
• Each bucket has size approx. B(R)/M

Relation R
OUTPUT PartitionsOUTPUT

2INPUT

1

h h

Partitions

1

2

1

2 hash
function

h M-1

2

M-1

. . .
2

B(R)

M main memory buffers DiskDisk

• Does each bucket fit in main memory ?

CSE 444 - Summer 2009

–Yes if B(R)/M <= M, i.e. B(R) <= M2

35

Partitioned (Grace) Hash Join

R S
• Step 1:

– Hash S into M-1 buckets
– Send all buckets to disk

• Step 2• Step 2
– Hash R into M-1 buckets
– Send all buckets to disk

• Step 3
– Join every pair of buckets

CSE 444 - Summer 2009 36

Partitioned Hash Join

• Partition both relations using hash fn h

Partitioned Hash Join

Partition both relations using hash fn h
• R tuples in partition i will only match S tuples in

partition i.p
Original
Relation OUTPUT

1
Partitions

2INPUT
hash

function

1

2

B main memory buffers Di kDi k

u ct o
h M-1

M-1

. . .

CSE 444 - Summer 2009

B main memory buffers DiskDisk

37

Partitioned Hash JoinPartitioned Hash Join

• Read in partition of R, hash it using h2 (≠ h)p , g ()
– Build phase

• Scan matching partition of S, search for matches
Partitions
of R & S

Hash table for partition
Si (< M 1 pages)

Join Result

h h

– Probe phase

Si (< M-1 pages)hash
fn
h2

h2

Input buffer
for Ri

B main memory buffersDisk

Output
buffer

Disk

h2

CSE 444 - Summer 2009

B main memory buffersDisk Disk

38

Partitioned Hash Join

• Cost: 3B(R) + 3B(S)
• Assumption: min(B(R), B(S)) <= M2p (() ())

CSE 444 - Summer 2009 39

External Sorting

• Problem: Sort a file of size B with memory M

• Where we need this:
– ORDER BY in SQL queries
– Several physical operators
– Bulk loading of B+-tree indexes.

• Sorting is two-pass when B < M2

CSE 444 - Summer 2009 40

External Merge-Sort: Step 1

• Phase one: load M pages in memory, sort

Size M pages

.

DiskDisk Main memory

41
Runs of length M pages

External Merge-Sort: Step 2

• Merge M – 1 runs into a new run
• Result: runs of length M (M – 1)≈ M2g ()

Input 1

. Input 2
. . . .

Output

DiskDisk

.Input M

If B < M2 th d
Main memory

CSE 444 - Summer 2009 42

If B <= M2 then we are done

External Merge-Sort

• Cost:
– Read+write+read = 3B(R)
– Assumption: B(R) <= M2

• Other considerations
– In general, a lot of optimizations are possible

CSE 444 - Summer 2009 43

Two-Pass Join AlgorithmTwo Pass Join Algorithm
Based on Sorting

Join R S
• Step 1: sort both R and S on the join attribute:p j

– Cost: 4B(R)+4B(S) (because need to write to disk)
• Step 2: Read both relations in sorted order,

match tuples
– Cost: B(R)+B(S)

• Total cost: 5B(R)+5B(S)
• Assumption: B(R) <= M2, B(S) <= M2

CSE 444 - Summer 2009 44

Two-Pass Join AlgorithmTwo Pass Join Algorithm
Based on Sorting

Join R S
• If B(R) + B(S) <= M2() ()

– Or if use a priority queue to create runs of length 2|M|
• If the number of tuples in R matching those in S is

small (or vice versa)
• We can compute the join during the merge phase

• Total cost: 3B(R)+3B(S)

CSE 444 - Summer 2009 45

Summary of Join Algorithms

• Nested Loop Join: B(R) + B(R)B(S)
– Assuming page-at-a-time refinement

• Hash Join: 3B(R) + 3B(S)
– Assuming: min(B(R), B(S)) <= M2

• Sort-Merge Join: 3B(R)+3B(S)
– Assuming B(R)+B(S) <= M2

• Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a)
– Assuming S has clustered index on a

46CSE 444 - Summer 2009

Summary of Query Execution

• For each logical query plan
– There exist many physical query plans

E h l h diff t t– Each plan has a different cost
– Cost depends on the data

• Additionally for each query• Additionally, for each query
– There exist several logical plans

• Next lecture: query optimization• Next lecture: query optimization
– How to compute the cost of a complete plan?
– How to pick a good query plan for a query?

CSE 444 - Summer 2009

How to pick a good query plan for a query?

47

