#### Introduction to Database Systems CSE 444

#### Lectures 6-7: Database Design

# Outline

• Design theory: 3.1-3.4

- [Old edition: 3.4-3.6]

# Schema Refinements = Normal Forms

- 1st Normal Form = all tables are flat
- 2nd Normal Form = obsolete
- Boyce Codd Normal Form = will study
- 3rd Normal Form = see book

# First Normal Form (1NF)

 A database schema is in First Normal Form if all tables are flat
 Student

Student

| Name  | GPA | Courses          |                         |
|-------|-----|------------------|-------------------------|
| Alice | 3.8 | Math<br>DB<br>OS |                         |
| Bob   | 3.7 | DB<br>OS         | May need                |
| Carol | 3.9 | Math<br>OS       | May need<br>to add keys |

| Name  | GPA |
|-------|-----|
| Alice | 3.8 |
| Bob   | 3.7 |
| Carol | 3.9 |

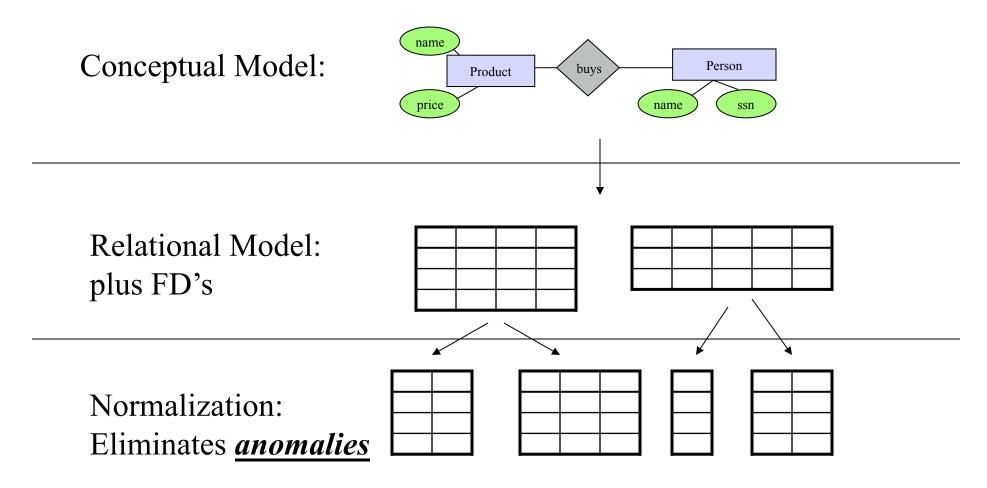
| Takes   |        |  |
|---------|--------|--|
| Student | Course |  |
| Alice   | Math   |  |
| Carol   | Math   |  |
| Alice   | DB     |  |
| Bob     | DB     |  |
| Alice   | OS     |  |
| Carol   | OS     |  |

| $\mathbb{C}$ | 01 | ur | Se | Э |
|--------------|----|----|----|---|
|              |    |    |    |   |

| Course |  |
|--------|--|
| Math   |  |
| DB     |  |
| OS     |  |

4

## **Relational Schema Design**



### Data Anomalies

When a database is poorly designed we get anomalies:

**Redundancy**: data is repeated

**<u>Updated anomalies</u>**: need to change in several places

**Delete anomalies**: may lose data when we don't want

# **Relational Schema Design**

Recall set attributes (persons with several phones):

| Name | <u>SSN</u>  | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |

One person may have multiple phones, but lives in only one city

Primary key is thus (SSN, Phone Number)

The above is in 1NF, but was is the problem with this schema?

# **Relational Schema Design**

Recall set attributes (persons with several phones):

| Name | <u>SSN</u>  | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |

#### Anomalies:

- Redundancy = repeat data
- Update anomalies = what if Fred moves to "Bellevue"?
- Deletion anomalies = what if Joe deletes his phone number? (what if Joe had only one phone #)

# **Relation Decomposition**

#### Break the relation into two:

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |

| Name | <u>SSN</u>  | City      |
|------|-------------|-----------|
| Fred | 123-45-6789 | Seattle   |
| Joe  | 987-65-4321 | Westfield |

| <u>SSN</u>  | PhoneNumber  |
|-------------|--------------|
| 123-45-6789 | 206-555-1234 |
| 123-45-6789 | 206-555-6543 |
| 987-65-4321 | 908-555-2121 |

#### Anomalies have gone:

- No more repeated data
- Easy to move Fred to "Bellevue" (how ?)
- Easy to delete all Joe's phone numbers (how ?)

# Relational Schema Design (or Logical Design)

Main idea:

- Start with some relational schema
- Find out its *functional dependencies*
  - They come from the application domain knowledge!
- Use them to design a better relational schema

# **Functional Dependencies**

- A form of constraint
  - Hence, part of the schema
- Finding them is part of the database design
- Use them to normalize the relations

## Functional Dependencies (FDs)

#### **Definition:**

If two tuples agree on the attributes

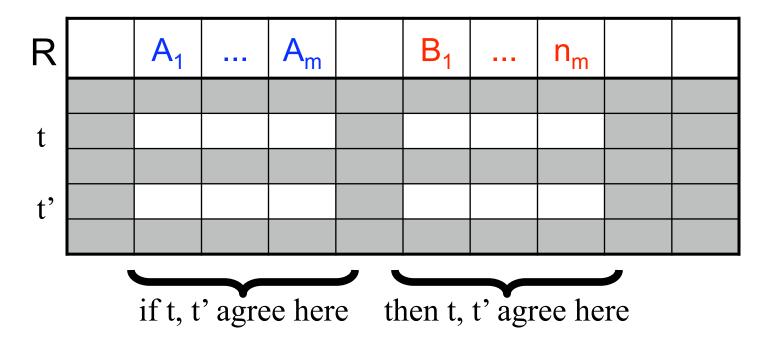
then they must also agree on the attributes

Formally:

$$A_1, A_2, \dots, A_n \rightarrow B_1, B_2, \dots, B_m$$

#### When Does an FD Hold

Definition: A<sub>1</sub>, ..., A<sub>m</sub> → B<sub>1</sub>, ..., B<sub>n</sub> holds in R if: ∀t, t' ∈ R, (t.A<sub>1</sub> = t'.A<sub>1</sub> ∧ ... ∧ t.A<sub>m</sub> = t'.A<sub>m</sub> ⇒ t.B<sub>1</sub> = t'.B<sub>1</sub> ∧ ... ∧ t.B<sub>n</sub> = t'.B<sub>n</sub>)



13

An FD holds, or does not hold on an instance:

| EmpID | Name  | Phone | Position |
|-------|-------|-------|----------|
| E0045 | Smith | 1234  | Clerk    |
| E3542 | Mike  | 9876  | Salesrep |
| E1111 | Smith | 9876  | Salesrep |
| E9999 | Mary  | 1234  | Lawyer   |

EmpID  $\rightarrow$  Name, Phone, Position

Position  $\rightarrow$  Phone

but not Phone  $\rightarrow$  Position

| EmpID | Name  | Phone  | Position |
|-------|-------|--------|----------|
| E0045 | Smith | 1234   | Clerk    |
| E3542 | Mike  | 9876 ← | Salesrep |
| E1111 | Smith | 9876 ← | Salesrep |
| E9999 | Mary  | 1234   | Lawyer   |

Position  $\rightarrow$  Phone

| EmpID | Name  | Phone  | Position |
|-------|-------|--------|----------|
| E0045 | Smith | 1234 → | Clerk    |
| E3542 | Mike  | 9876   | Salesrep |
| E1111 | Smith | 9876   | Salesrep |
| E9999 | Mary  | 1234 → | Lawyer   |

#### But not Phone $\rightarrow$ Position

FD's are constraints:

- On some instances they hold
- On others they don't

name  $\rightarrow$  color category  $\rightarrow$  department color, category  $\rightarrow$  price

| name    | category | color | department | price |
|---------|----------|-------|------------|-------|
| Gizmo   | Gadget   | Green | Toys       | 49    |
| Tweaker | Gadget   | Green | Toys       | 99    |

Does this instance satisfy all the FDs ?

#### Example name $\rightarrow$ color category $\rightarrow$ department color, category $\rightarrow$ price

| name    | category   | color | department       | price |
|---------|------------|-------|------------------|-------|
| Gizmo   | Gadget     | Green | Toys             | 49    |
| Tweaker | Gadget     | Black | Toys             | 99    |
| Gizmo   | Stationary | Green | Office-<br>supp. | 59    |

What about this one ?

# An Interesting Observation

If all these FDs are true:

name  $\rightarrow$  color category  $\rightarrow$  department color, category  $\rightarrow$  price

Then this FD also holds:

name, category  $\rightarrow$  price

Why ??

# Goal: Find ALL Functional Dependencies

- Anomalies occur when certain "bad" FDs hold
- We know some of the FDs
- Need to find *all* FDs
- Then look for the bad ones

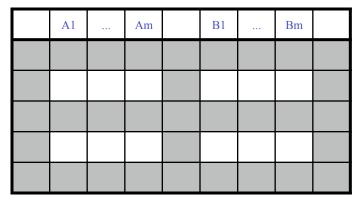
### Armstrong's Rules (1/3)

$$A_1, A_2, \dots, A_n \rightarrow B_1, B_2, \dots, B_m$$

Is equivalent to

Splitting rule and Combing rule

$$\begin{array}{c} A_1, A_2, \dots, A_n \rightarrow B_1 \\ A_1, A_2, \dots, A_n \rightarrow B_2 \\ \dots \\ A_1, A_2, \dots, A_n \rightarrow B_m \end{array}$$

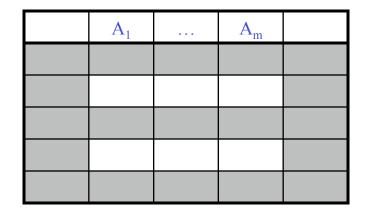


### Armstrong's Rules (2/3)

$$A_1, A_2, \dots, A_n \rightarrow A_i$$

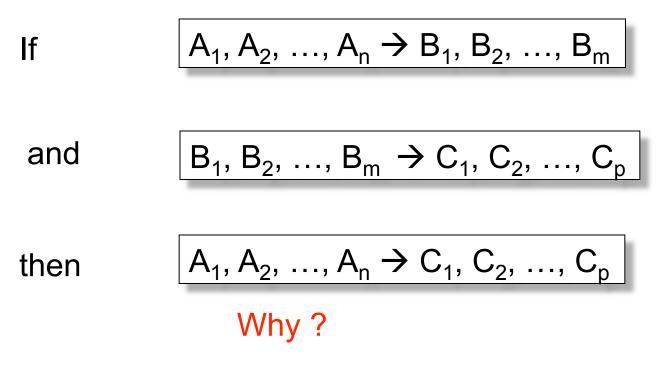
**Trivial Rule** 

Why?



### Armstrong's Rules (3/3)

#### **Transitive Rule**



# Armstrong's Rules (3/3)

#### Illustration

| A <sub>1</sub> | <br>A <sub>m</sub> | <b>B</b> <sub>1</sub> | ••• | B <sub>m</sub> | <b>C</b> <sub>1</sub> | <br>C <sub>p</sub> |  |
|----------------|--------------------|-----------------------|-----|----------------|-----------------------|--------------------|--|
|                |                    |                       |     |                |                       |                    |  |
|                |                    |                       |     |                |                       |                    |  |
|                |                    |                       |     |                |                       |                    |  |
|                |                    |                       |     |                |                       |                    |  |
|                |                    |                       |     |                |                       |                    |  |

### Example (continued)

Start from the following FDs:

1. name  $\rightarrow$  color

2. category  $\rightarrow$  department

3. color, category  $\rightarrow$  price

Infer the following FDs:

| Inferred FD                                     | Which Rule<br>did we apply ? |
|-------------------------------------------------|------------------------------|
| 4. name, category $\rightarrow$ name            |                              |
| 5. name, category $\rightarrow$ color           |                              |
| 6. name, category $\rightarrow$ category        |                              |
| 7. name, category $\rightarrow$ color, category |                              |
| 8. name, category $\rightarrow$ price           |                              |

# Example (continued)

Answers:

1. name  $\rightarrow$  color

2. category  $\rightarrow$  department

3. color, category  $\rightarrow$  price

| Inferred FD                                     | Which Rule<br>did we apply ? |  |  |
|-------------------------------------------------|------------------------------|--|--|
| 4. name, category $\rightarrow$ name            | Trivial rule                 |  |  |
| 5. name, category $\rightarrow$ color           | Transitivity on 4, 1         |  |  |
| 6. name, category $\rightarrow$ category        | Trivial rule                 |  |  |
| 7. name, category $\rightarrow$ color, category | Split/combine on 5, 6        |  |  |
| 8. name, category $\rightarrow$ price           | Transitivity on 3, 7         |  |  |

THIS IS TOO HARD ! Let's see an easier way.

# Closure of a set of Attributes

**Given** a set of attributes A<sub>1</sub>, ..., A<sub>n</sub>

The **closure**,  $\{A_1, ..., A_n\}^+$  = the set of attributes B s.t.  $A_1, \ldots, A_n \rightarrow B$ 

Example: name  $\rightarrow$  color category  $\rightarrow$  department color, category  $\rightarrow$  price

**Closures:** 

```
name^+ = \{name, color\}
{name, category}<sup>+</sup> = {name, category, color, department, price}
color^+ = \{color\}
                                                                 27
```

# **Closure Algorithm**

X={A1, ..., An}.Example:Repeat until X doesn't change do: $name \rightarrow color$ if $B_1, ..., B_n \rightarrow C$  is a FD and $name \rightarrow color$  $B_1, ..., B_n$  are all in X $color, category \rightarrow department$ thenadd C to X.

{name, category}<sup>+</sup> =
 { name, category, color, department, price }
Hence: name, category → color, department, price

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute  $\{A,B\}^+$  X =  $\{A, B, B, A, B, B, A, B,$ 

Compute  $\{A, F\}^+$  X =  $\{A, F, F\}^+$ 

Magda Balazinska - CSE 444, Fall 2010

}

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Magda Balazinska - CSE 444, Fall 2010

}

In class:

R(A,B,C,D,E,F)

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow E \\ B \rightarrow D \\ A, F \rightarrow B \end{array}$$

Compute  $\{A,B\}^+$  X =  $\{A, B, C, D, E\}$ Compute  $\{A, F\}^+$  X =  $\{A, F, B, C, D, E\}$ 

# Why Do We Need Closure

- With closure we can find all FD's easily
- To check if  $X \rightarrow A$ 
  - Compute X<sup>+</sup>
  - Check if  $A \in X^+$

# Using Closure to Infer ALL FDs

Example:  $A, B \rightarrow C$  $A, D \rightarrow B$  $B \rightarrow D$ 

Step 1: Compute X<sup>+</sup>, for every X:

$$\begin{array}{l} A+=A, \hspace{0.2cm} B+=BD, \hspace{0.2cm} C+=C, \hspace{0.2cm} D+=D\\ AB+=ABCD, \hspace{0.2cm} AC+=AC, \hspace{0.2cm} AD+=ABCD,\\ BC+=BCD, \hspace{0.2cm} BD+=BD, \hspace{0.2cm} CD+=CD\\ ABC+=ABD+=ACD^{+}=ABCD \hspace{0.2cm} (\text{no need to compute-why ?})\\ BCD^{+}=BCD, \hspace{0.2cm} ABCD+=ABCD \end{array}$$

Step 2: Enumerate all FD's  $X \rightarrow Y$ , s.t.  $Y \subseteq X^+$  and  $X \cap Y = \emptyset$ : AB  $\rightarrow$  CD, AD $\rightarrow$ BC, BC $\rightarrow$ D, ABC  $\rightarrow$  D, ABD  $\rightarrow$  C, ACD  $\rightarrow$  B

### Another Example

• Enrollment(student, major, course, room, time)

student  $\rightarrow$  major major, course  $\rightarrow$  room course  $\rightarrow$  time

What else can we infer ? [in class, or at home]

# Keys

- A superkey is a set of attributes A<sub>1</sub>, ..., A<sub>n</sub> s.t. for any other attribute B, we have A<sub>1</sub>, ..., A<sub>n</sub> → B
- A key is a minimal superkey
  - I.e. set of attributes which is a superkey and for which no subset is a superkey

# Computing (Super)Keys

- Compute X<sup>+</sup> for all sets X
- If X<sup>+</sup> = all attributes, then X is a superkey
- List only the minimal X's to get the keys

Product(name, price, category, color)

name, category  $\rightarrow$  price category  $\rightarrow$  color

What is the key?

Product(name, price, category, color)

name, category  $\rightarrow$  price category  $\rightarrow$  color

What is the key?

(name, category) + = { name, category, price, color }

Hence (name, category) is a key

### Examples of Keys

Enrollment(student, address, course, room, time)

student  $\rightarrow$  address room, time  $\rightarrow$  course student, course  $\rightarrow$  room, time

(find keys at home)

#### **Eliminating Anomalies**

Main idea:

- $X \rightarrow A$  is OK if X is a (super)key
- $X \rightarrow A$  is not OK otherwise

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |
| Joe  | 987-65-4321 | 908-555-1234 | Westfield |

SSN  $\rightarrow$  Name, City

What is the key? {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

## Key or Keys ?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

## Key or Keys ?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys



what are the keys here ?

Can you design FDs such that there are three keys?

## **Boyce-Codd Normal Form**

A simple condition for removing anomalies from relations:

A relation R is in BCNF if: If  $A_1, ..., A_n \rightarrow B$  is a non-trivial dependency in R, then  $\{A_1, ..., A_n\}$  is a superkey for R

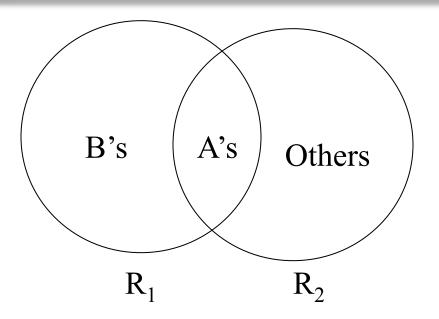
In other words: there are no "bad" FDs

Equivalently: for all X, either (X<sup>+</sup> = X) or (X<sup>+</sup> = all attributes)

### **BCNF Decomposition Algorithm**

#### <u>repeat</u>

choose  $A_1, ..., A_m \rightarrow B_1, ..., B_n$  that violates BCNF split R into  $R_1(A_1, ..., A_m, B_1, ..., B_n)$  and  $R_2(A_1, ..., A_m, [others])$ continue with both  $R_1$  and  $R_2$ <u>until</u> no more violations



Is there a 2-attribute relation that is not in BCNF ?

In practice, we have a better algorithm (coming up) 45

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Seattle   |
| Fred | 123-45-6789 | 206-555-6543 | Seattle   |
| Joe  | 987-65-4321 | 908-555-2121 | Westfield |
| Joe  | 987-65-4321 | 908-555-1234 | Westfield |

 $SSN \rightarrow Name, City$ 

What is the key? {SSN, PhoneNumber} use SSN → Name, City to split

| Name | <u>SSN</u>  | City      |
|------|-------------|-----------|
| Fred | 123-45-6789 | Seattle   |
| Joe  | 987-65-4321 | Westfield |

SSN  $\rightarrow$  Name, City

| <u>SSN</u>  | PhoneNumber  |
|-------------|--------------|
| 123-45-6789 | 206-555-1234 |
| 123-45-6789 | 206-555-6543 |
| 987-65-4321 | 908-555-2121 |
| 987-65-4321 | 908-555-1234 |

Let's check anomalies:

- Redundancy ?
- Update ?
- Delete ?

# **Example Decomposition**

Person(name, SSN, age, hairColor, phoneNumber) FD1: SSN → name, age FD2: age → hairColor
Decompose in BCNF (in class):

# **Example Decomposition**

Person(name, SSN, age, hairColor, phoneNumber) FD1: SSN → name, age FD2: age → hairColor

Decompose in BCNF (in class): What is the key?

{SSN, phoneNumber}

But how to decompose? Person(SSN, name, age) Phone(SSN, hairColor, phoneNumber) Or Person(SSN, name, age, hairColor) Phone(SSN, phoneNumber) Or ....

# **BCNF Decomposition Algorithm**

BCNF\_Decompose(R)

```
find X s.t.: X \neq X^+ \neq [all attributes]
```

```
<u>if</u> (not found) <u>then</u> "R is in BCNF"
```

```
<u>let</u> Y = X^+ - X

<u>let</u></u> Z = [all attributes] - X^+

decompose R into R1(X \cup Y) and R2(X \cup Z)

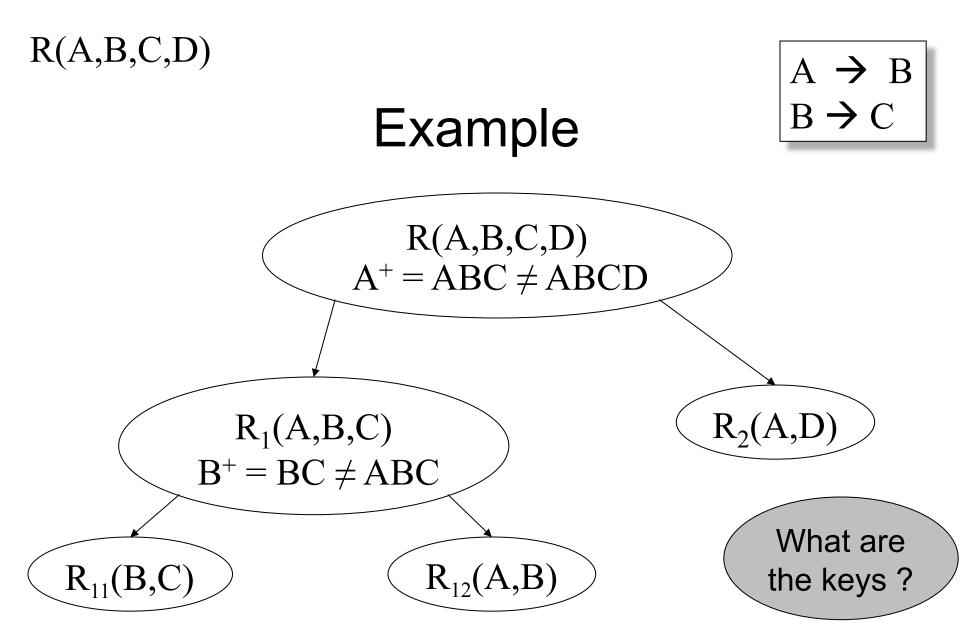
continue to decompose recursively R1 and R2</u></u>
```

Find X s.t.:  $X \neq X^+ \neq$  [all attributes]

## **Example BCNF Decomposition**

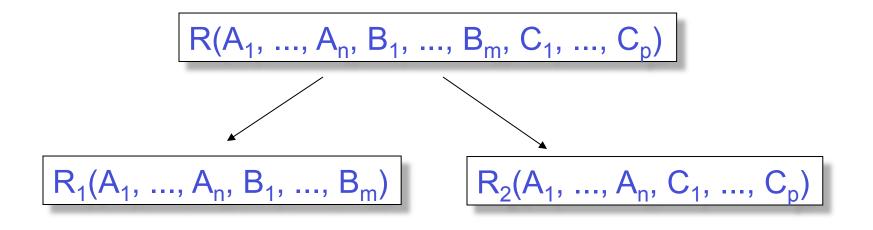
Person(name, SSN, age, hairColor, phoneNumber) SSN → name, age age → hairColor





What happens if in R we first pick  $B^+$ ? Or  $AB^+$ ?

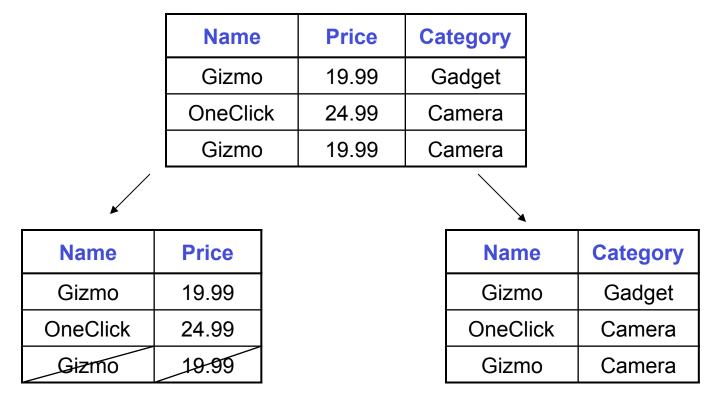
#### **Decompositions in General**



 $R_1 = \text{projection of } R \text{ on } A_1, \dots, A_n, B_1, \dots, B_m$  $R_2 = \text{projection of } R \text{ on } A_1, \dots, A_n, C_1, \dots, C_p$ 

# Theory of Decomposition

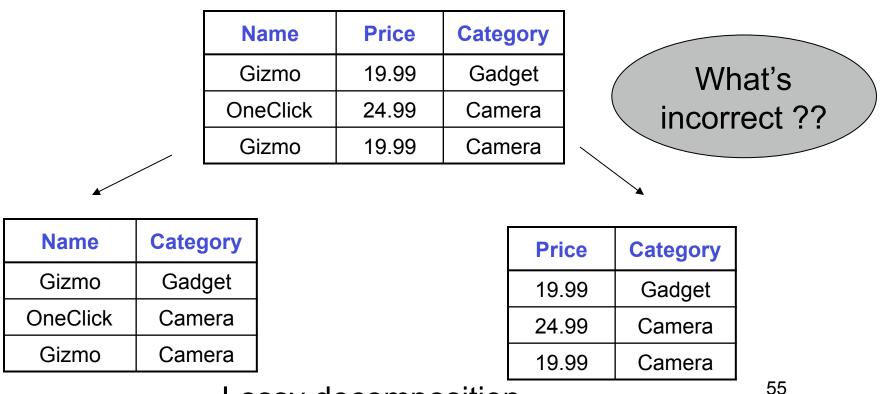
• Sometimes it is correct:



Lossless decomposition

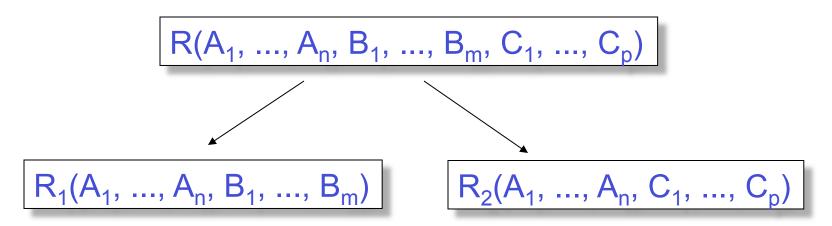
#### **Incorrect Decomposition**

• Sometimes it is not:



Lossy decomposition

#### **Decompositions in General**



If  $A_1, ..., A_n \rightarrow B_1, ..., B_m$ Then the decomposition is lossless

Note: don't need  $A_1, ..., A_n \rightarrow C_1, ..., C_p$ 

BCNF decomposition is always lossless. WHY?

# Optional

- The following four slides are optional
- The content will not be on any exam
- But please take a look because they motivate the need for 3NF
- It's good to know at least why 3NF exists

#### **General Decomposition Goals**

- 1. Elimination of anomalies
- 2. Recoverability of information
  - Can we get the original relation back?
- 3. Preservation of dependencies
  - Want to enforce FDs without performing joins

Sometimes cannot decomposed into BCNF without losing ability to check some FDs

# **BCNF** and Dependencies

| Unit | Company | Product |
|------|---------|---------|
|      |         |         |

FD's: Unit  $\rightarrow$  Company; Company, Product  $\rightarrow$  Unit So, there is a BCNF violation, and we decompose.

# **BCNF** and Dependencies

| Unit | Company | Product |
|------|---------|---------|
|      |         |         |

FD's: Unit  $\rightarrow$  Company; Company, Product  $\rightarrow$  Unit So, there is a BCNF violation, and we decompose.

| Unit | Company |
|------|---------|
|      |         |

Unit → Company

| Unit | Product |
|------|---------|
|      |         |

No FDs

In BCNF we lose the FD: Company, Product → Unit Magda Balazinska - CSE 444, Fall 2010

## **3NF** Motivation

```
A relation R is in 3rd normal form if :
Whenever there is a nontrivial dep. A_1, A_2, ..., A_n \rightarrow B for R,
then \{A_1, A_2, ..., A_n\} is a super-key for R,
or B is part of a key.
```

Tradeoffs BCNF = no anomalies, but may lose some FDs 3NF = keeps all FDs, but may have some anomalies