
10/31/10

1

Introduction to Database Systems
CSE 444

Lecture 15

Transactions: Isolation Levels

Magda Balazinska - CSE 444, Fall 2010 1 2

READ-ONLY Transactions
Client 1: START TRANSACTION

 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY
 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

Can help DBMS
improve

performance

3

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

ACID

Magda Balazinska - CSE 444, Fall 2010

Choosing Isolation Level

•  Trade-off: efficiency vs correctness

•  DBMSs give user choice of level

Magda Balazinska - CSE 444, Fall 2010 4

Beware!!
•  Default level is often NOT serializable
•  Default level differs between DBMSs
•  Some engines support subset of levels!
•  Serializable may not be exactly ACID

Always read
DBMS docs!

1. Isolation Level: Dirty Reads

Implementation using locks:

•  “Long duration” WRITE locks
–  A.k.a Strict Two Phase Locking (you knew that !)

•  Do not use READ locks
–  Read-only transactions are never delayed

Possible pbs: dirty and inconsistent reads

5 Magda Balazinska - CSE 444, Fall 2010

2. Isolation Level: Read Committed

Implementation using locks:

•  “Long duration” WRITE locks

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

•  Possible pbs: unrepeatable reads
–  When reading same element twice,

–  may get two different values
6 Magda Balazinska - CSE 444, Fall 2010

10/31/10

2

2. Read Committed in Java

Magda Balazinska - CSE 444, Fall 2010 7

In the handout: Lecture15.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: Lecture15.java – Transaction 2:
db.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
db.setAutoCommit(false);
writeAccount();
db.commit();

Can see a
different value

3. Isolation Level: Repeatable Read

Implementation using locks:

•  “Long duration” READ and WRITE locks
–  Full Strict Two Phase Locking

•  This is not serializable yet !!!

8 Magda Balazinska - CSE 444, Fall 2010

3. Repeatable Read in Java

Magda Balazinska - CSE 444, Fall 2010 9

In the handout: Lecture15.java - Transaction 1:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
readAccount();
Thread.sleep(5000);
readAccount();
db.commit();

In the handout: Lecture15.java – Transaction 2:
db.setTransactionIsolation(Connection. TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
writeAccount();
db.commit();

Now sees the
same value

3. Repeatable Read in Java

Magda Balazinska - CSE 444, Fall 2010 10

In the handout: Lecture15.java – Transaction 3:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: Lecture15.java – Transaction 4:
db.setTransactionIsolation(Connection.TRANSACTION_REPEATABLE_READ);
db.setAutoCommit(false);
insertAccount();
db.commit();

Can see a
different count

Note: In PostgreSQL will still see the same count.

The Phantom Problem

11

T1:
 select count(*) from R where price>20

 select count(*) from R where price>20

T2:

 insert into R(name,price)
 values(‘Gizmo’, 50)

R1(X), R1(Y), R1(Z), W2(New), R1(X), R1(Y), R1(Z), R1(New)

The schedule is conflict-serializable, yet we get different counts !

“Phantom” = tuple visible only during some part of the transaction

Magda Balazinska - CSE 444, Fall 2010

The Phantom Problem

•  The problem is in the way we model transactions:
–  Fixed set of elements

•  This model fails to capture insertions, because
these create new elements

•  No easy solutions:
–  Need “predicate locking” but how to implement it?

–  Sol1: Lock on the entire relation R (or chunks)

–  Sol2: If there is an index on ‘price’, lock the index nodes

12 Magda Balazinska - CSE 444, Fall 2010

10/31/10

3

4. Serializable in Java

Magda Balazinska - CSE 444, Fall 2010 13

In the handout: Lecture13.java – Transaction 3:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
countAccounts();
Thread.sleep(5000);
countAccounts();
db.commit();

In the handout: Lecture13.java – Transaction 4:
db.setTransactionIsolation(Connection. TRANSACTION_SERIALIZABLE);
db.setAutoCommit(false);
insertAccount();
db.commit();

Now should see
same count

Magda Balazinska - CSE 444, Fall 2010 14

Commercial Systems

•  DB2: Strict 2PL

•  SQL Server:
–  Strict 2PL for standard 4 levels of isolation

–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL:
–  Multiversion concurrency control

•  Oracle
–  Multiversion concurrency control

Snapshot Isolation

•  Reading: M. J. Franklin. “Concurrency Control and
Recovery”. Posted on class website

15 Magda Balazinska - CSE 444, Fall 2010

Snapshot Isolation

•  A type of multiversion concurrency control algorithm

•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…

•  Not serializable (!), yet ORACLE and PostgreSQL
use it even for SERIALIZABLE transactions!

16 Magda Balazinska - CSE 444, Fall 2010

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the database

•  When T commits, updated pages are written to disk

•  Write/write conflicts resolved by “first committer wins” rule

•  Read/write conflicts are ignored

17 Magda Balazinska - CSE 444, Fall 2010

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).

•  When T writes X: if other transaction updated X, abort
–  Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once we
abort T, U becomes the first committer

18 Magda Balazinska - CSE 444, Fall 2010

10/31/10

4

What Works and What Not

•  No dirty reads (Why ?)

•  No inconsistent reads (Why ?)
–  A: Each transaction reads a consistent snapshot

•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

19 Magda Balazinska - CSE 444, Fall 2010

Write Skew

20

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Magda Balazinska - CSE 444, Fall 2010

Write Skews Can Be Serious

•  Acidicland had two viceroys, Delta and Rho

•  Budget had two registers: taXes, and spendYng

•  They had high taxes and low spending…

21

Delta:
 READ(taXes);
 if taXes = ‘High’
 then { spendYng = ‘Raise’;
 WRITE(spendYng) }
 COMMIT

Rho:
 READ(spendYng);
 if spendYng = ‘Low’
 then {taXes = ‘Cut’;
 WRITE(taXes) }
 COMMIT

… and they ran a deficit ever since.

Questions/Discussions

•  How does snapshot isolation (SI) compare to repeatable
reads and serializable?
–  A: SI avoids most but not all phantoms (e.g., write skew)

•  Note: Oracle & PostgreSQL implement it even for
isolation level SERIALIZABLE

•  How can we enforce serializability at the app. level ?
–  A: Use dummy writes for all reads to create write-write conflicts

22 Magda Balazinska - CSE 444, Fall 2010

