
11/2/10

1

Introduction to Database Systems
CSE 444

Lecture 16: Data Storage and Indexes

Magda Balazinska - CSE 444, Fall 2010 1

About the Midterm

•  Open book and open notes
–  But you won’t have time to read during midterm!

–  No laptops, no mobile devices

•  Four questions:
1.  SQL

2.  ER Diagrams / Database design

3.  Transactions - recovery

4.  Transactions - concurrency control
CSE 444 - Spring 2009 2

More About the Midterm

•  Review Lectures 1 through 15
–  Read the lecture notes carefully

–  Read the book for extra details, extra explanations

•  Review Project 1 (Project 2 not on any exam)

•  Review HW1 and HW2

•  Take a look at sample midterms & finals

CSE 444 - Spring 2009 3

Where We Are

•  How to use a DBMS as a:
–  Data analyst: SQL, SQL, SQL,…

–  Application programmer: JDBC, XML,…
–  Database administrator: tuning, triggers, security

–  Massive-scale data analyst: Pig/MapReduce

•  How DBMSs work:
–  Transactions
–  Data storage and indexing

–  Query execution

•  Databases as a service

4 Magda Balazinska - CSE 444, Fall 2010

5

Outline

•  Storage model

•  Index structures (Section 14.1)
–  [Old edition: 13.1 and 13.2]

•  B-trees (Section 14.2)
–  [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010

Storage Model

•  DBMS needs spatial and temporal control over storage
–  Spatial control for performance

–  Temporal control for correctness and performance
•  Solution: Buffer manager inside DBMS (see past lectures)

•  For spatial control, two alternatives
–  Use “raw” disk device interface directly

–  Use OS files

Magda Balazinska - CSE 444, Fall 2010 6

11/2/10

2

Magda Balazinska - CSE 444, Fall 2010

Spatial Control
Using “Raw” Disk Device Interface

•  Overview
–  DBMS issues low-level storage requests directly to disk device

•  Advantages
–  DBMS can ensure that important queries access data

sequentially

–  Can provide highest performance

•  Disadvantages
–  Requires devoting entire disks to the DBMS

–  Reduces portability as low-level disk interfaces are OS specific

–  Many devices are in fact “virtual disk devices”

7 Magda Balazinska - CSE 444, Fall 2010

Spatial Control
Using OS Files

•  Overview
–  DBMS creates one or more very large OS files

•  Advantages
–  Allocating large file on empty disk can yield good physical

locality

•  Disadvantages
–  OS can limit file size to a single disk
–  OS can limit the number of open file descriptors

–  But these drawbacks have mostly been overcome by
modern OSs

8

Magda Balazinska - CSE 444, Fall 2010

Commercial Systems

•  Most commercial systems offer both alternatives
–  Raw device interface for peak performance

–  OS files more commonly used

•  In both cases, we end-up with a DBMS file
abstraction implemented on top of OS files or raw
device interface

9 10

Outline

•  Storage model

•  Index structures (Section 14.1)
–  [Old edition: 13.1 and 13.2]

•  B-trees (Section 14.2)
–  [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010

11

Database File Types

The data file can be one of:

•  Heap file
–  Set of records, partitioned into blocks

–  Unsorted

•  Sequential file
–  Sorted according to some attribute(s) called key

“key” here means something else than “primary key”

Magda Balazinska - CSE 444, Fall 2010

Index

•  A (possibly separate) file, that allows fast
access to records in the data file given a
search key

•  The index contains (key, value) pairs:
–  The key = an attribute value

–  The value = either a pointer to the record, or the
record itself

12

“key” (aka “search key”) again means something else

Magda Balazinska - CSE 444, Fall
2010

11/2/10

3

13

Index Classification

•  Clustered/unclustered
–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  Primary/secondary
–  Meaning 1:

•  Primary = is over attributes that include the primary key
•  Secondary = otherwise

–  Meaning 2: means the same as clustered/unclustered

•  Organization: B+ tree or Hash table
Magda Balazinska - CSE 444, Fall

2010

Clustered/Unclustered

•  Clustered
–  Index determines the location of indexed records
–  Typically, clustered index is one where values are

data records (but not necessary)

•  Unclustered
–  Index cannot reorder data, does not determine

data location
–  In these indexes: value = pointer to data record

Magda Balazinska - CSE 444, Fall 2010 14

15

Clustered Index

•  File is sorted on the index attribute

•  Only one per table

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Index File
Data File

16

Unclustered Index

•  Several per table

10

10

20

20

20

30

30

30

20

30

30

20

10

20

10

30

Magda Balazinska - CSE 444, Fall 2010

Clustered vs. Unclustered Index

Data entries

(Index File)

(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

B+ Tree B+ Tree

17 Magda Balazinska - CSE 444, Fall 2010

•  More commonly, in a clustered B+ Tree index,
data entries are data records

Hash-Based Index Example

CSE 444 - Spring 2009 18

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

Example hash-based index
on sid (student id)

This is a primary index
because it determines the location
of indexed records

In this case, data entries in the index
are actual data records
There is no separate data file

This index is also clustered

Index File Hash function h1

11/2/10

4

Hash-Based Index Example 2

CSE 444 - Spring 2009 19

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2 age

h2(age) = 00

h2(age) = 01

Secondary index
Data entries in index are (key,RID) pairs

Unclustered index

Data File Index File

Magda Balazinska - CSE 444, Fall 2010

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H1

h1(sid) = 00

h1(sid) = 11

sid

H2 age

h2(age) = 00

h2(age) = 01

Another example of
clustered/primary index

Another example
of unclustered/secondary index

Good for point queries but not range queries

20

21

Outline

•  Storage model

•  Index structures (Section 14.1)
–  [Old edition: 13.1 and 13.2]

•  B-trees (Section 14.2)
–  [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010 22

B+ Trees

•  Search trees

•  Idea in B Trees
–  Make 1 node = 1 block

–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list: facilitates range queries

Magda Balazinska - CSE 444, Fall 2010

23

•  Parameter d = the degree

•  Each node has d <= m <= 2d keys (except root)

•  Each leaf has d <= m <= 2d keys

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Each node also
has m+1 pointers

24

B+ Tree Example

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 ≤ 80

20 < 40 ≤ 60

30 < 40 ≤ 40

Magda Balazinska - CSE 444, Fall 2010

11/2/10

5

25

B+ Tree Design

•  How large d ?

•  Example:
–  Key size = 4 bytes

–  Pointer size = 8 bytes

–  Block size = 4096 bytes

•  2d x 4 + (2d+1) x 8 <= 4096

•  d = 170

Magda Balazinska - CSE 444, Fall 2010 26

Searching a B+ Tree

•  Exact key values:
–  Start at the root

–  Proceed down, to the leaf

•  Range queries:
–  As above

–  Then sequential traversal

Select name
From people
Where age = 25

Select name
From people
Where 20 <= age
 and age <= 30

Magda Balazinska - CSE 444, Fall 2010

B+ Trees in Practice

•  Typical order: 100. Typical fill-factor: 67%
–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

27 Magda Balazinska - CSE 444, Fall 2010 28

Insertion in a B+ Tree

Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, keep K3 too in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 P5

K1 K2

P0 P1 P2

K4 K5

P3 P4 P5

parent
 K3

parent

Magda Balazinska - CSE 444, Fall 2010

29

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

Magda Balazinska - CSE 444, Fall 2010 30

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

Magda Balazinska - CSE 444, Fall 2010

11/2/10

6

31

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

Magda Balazinska - CSE 444, Fall 2010 32

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

Magda Balazinska - CSE 444, Fall 2010

33

Insertion in a B+ Tree

80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

Magda Balazinska - CSE 444, Fall 2010 34

Insertion in a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

Magda Balazinska - CSE 444, Fall 2010

35

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

Magda Balazinska - CSE 444, Fall 2010 36

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

Magda Balazinska - CSE 444, Fall 2010

11/2/10

7

37

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

Magda Balazinska - CSE 444, Fall 2010 38

Deletion from a B+ Tree

80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

Magda Balazinska - CSE 444, Fall 2010

39

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

Magda Balazinska - CSE 444, Fall 2010 40

Deletion from a B+ Tree

80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

Magda Balazinska - CSE 444, Fall 2010

41

Deletion from a B+ Tree

80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

Magda Balazinska - CSE 444, Fall 2010 42

Summary of B+ Trees

•  Default index structure on most DBMS

•  Very effective at answering ‘point’ queries:
 productName = ‘gizmo’

•  Effective for range queries:
 50 < price AND price < 100

•  Less effective for multirange:
 50 < price < 100 AND 2 < quant < 20

Magda Balazinska - CSE 444, Fall 2010

11/2/10

8

Indexes in PostgreSQL

43

CREATE INDEX V1_N ON V(N)

CREATE TABLE V(M int, N varchar(20), P int);

CREATE INDEX V2 ON V(P, M)

CREATE INDEX VVV ON V(M, N)

CLUSTER V USING V2 Makes V2 clustered
Magda Balazinska - CSE 444, Fall 2010

