Introduction to Database Systems
CSE 444

Lecture 16: Data Storage and Indexes

Magda Balazinska - CSE 444, Fall 2010 1

About the Midterm

* Open book and open notes

— But you won’t have time to read during midterm!
— No laptops, no mobile devices

« Four questions:
1. SQL
2. ER Diagrams / Database design
3. Transactions - recovery
4. Transactions - concurrency control

CSE 444 - Spring 2009 2

More About the Midterm

» Review Lectures 1 through 15
— Read the lecture notes carefully
— Read the book for extra details, extra explanations

* Review Project 1 (Project 2 not on any exam)
* Review HW1 and HW2

» Take a look at sample midterms & finals

CSE 444 - Spring 2009 3

Where We Are

* How to use a DBMS as a:
— Data analyst: SQL, SQL, SQL,...
— Application programmer: JDBC, XML, ...
— Database administrator: tuning, triggers, security
— Massive-scale data analyst: Pig/MapReduce
* How DBMSs work:
— Transactions
— Data storage and indexing
— Query execution
» Databases as a service

Magda Balazinska - CSE 444, Fall 2010 4

Outline

» Storage model

* Index structures (Section 14.1)
— [Old edition: 13.1 and 13.2]

» B-trees (Section 14.2)
— [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010 5

Storage Model

+ DBMS needs spatial and temporal control over storage
— Spatial control for performance
— Temporal control for correctness and performance
+ Solution: Buffer manager inside DBMS (see past lectures)

« For spatial control, two alternatives
— Use “raw” disk device interface directly
— Use OS files

Magda Balazinska - CSE 444, Fall 2010 6

11/2/10

Spatial Control
Using “Raw” Disk Device Interface

* Overview
— DBMS issues low-level storage requests directly to disk device
+ Advantages

— DBMS can ensure that important queries access data
sequentially

— Can provide highest performance
» Disadvantages
— Requires devoting entire disks to the DBMS
— Reduces portability as low-level disk interfaces are OS specific
— Many devices are in fact “virtual disk devices”

Magda Balazinska - CSE 444, Fall 2010

Commercial Systems

Most commercial systems offer both alternatives
— Raw device interface for peak performance
— OS files more commonly used

In both cases, we end-up with a DBMS file

abstraction implemented on top of OS files or raw
device interface

Magda Balazinska - CSE 444, Fall 2010

Spatial Control
Using OS Files

* Overview
— DBMS creates one or more very large OS files
« Advantages

— Allocating large file on empty disk can yield good physical
locality

» Disadvantages
— OS can limit file size to a single disk
— OS can limit the number of open file descriptors

— But these drawbacks have mostly been overcome by
modern OSs

Magda Balazinska - CSE 444, Fall 2010

Outline

» Storage model

 Index structures (Section 14.1)
— [Old edition: 13.1 and 13.2]

» B-trees (Section 14.2)
— [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010

Database File Types

The data file can be one of:
» Heap file

— Set of records, partitioned into blocks
— Unsorted

» Sequential file
— Sorted according to some attribute(s) called key

[“key" here means something else than “primary key"}

Magda Balazinska - CSE 444, Fall 2010 "

Index

* A (possibly separate) file, that allows fast
access to records in the data file given a
search key

» The index contains (key, value) pairs:

— The key = an attribute value

— The value = either a pointer to the record, or the
record itself

{“key“ (aka “search key”) again means something else}

Magda Balazinska - CSE 444, Fall 12

11/2/10

11/2/10

Index Classification Clustered/Unclustered
+ Clustered/unclustered * Clustered
— Clustered = records close in index are close in data — Index determines the location of indexed records
— Unclustered = records close in index may be far in data — Typically, clustered index is one where values are

data records (but not necessary)

» Primary/secondary

— Meaning 1: * Unclustered
« Primary = is over attributes that include the primary key _ Index cannot reorder data, does not determine
« Secondary = otherwise data location !
— Meaning 2: means the same as clustered/unclustered In th ind | inter to dat d
— Inthese Indexes: value = pointer 1o data recor

« Organization: B+ tree or Hash table

Magda Balazinska - CSE 444, Fall 13 Magda Balazinska - CSE 444, Fall 2010 14
Clustered Index Unclustered Index
« File is sorted on the index attribute » Several per table
* Only one per table] — =
Index File Data File " D)
T] e %
T E . 0
] - 0
CHE E1
70
20 15 Magda Balazinska - CSE 444, Fall 2010 16
Clustered vs. Unclustered Index Hash-Based Index Example
Index File Hash function h1

Example hash-based index
on sid (student id)

h1(sid) = 00

Data entries ’ This is a primary index
- because it determines the location
) of indexed records

sid

6 tl h l:l DE% rDaDla " ﬁﬁﬁ\ﬁzﬁﬁm In this case, data entries in the index

Data Records Data Records are actual data records

CLUSTERED UNCLUSTERED There is no separate data file h1(sid) = 11

. . This index is also clustered
+ More commonly, in a clustered B+ Tree index, 'S Indexs aiso clustere

data entries are data records

Magda Balazinska - CSE 444, Fall 2010 17 CSE 444 - Spring 2009 18

Hash-Based Index Example 2

Index File Data File
h2(age) =00 s]
- A s

age = % T

PR

h2(age)=01 | *1—4

= [0 2]
0 o [o |
Secondary index o [= |

Data entries in index are (key,RID) pairs

Unclustered index CSE 444 - Spring 2009 19

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00 1
m i E o

0 | ERE h1(sid) = 00
age = » %
i w o

h2(age) =01 | =1 =4 sid
i R
5 > %
hi(sid) = 11

CRE
w [

Another example
of unclustered/secondary index

Another example of
clustered/primary index
Magda Balazinska - CSE 444, Fall 2010 20

11/2/10

Outline
» Storage model

* Index structures (Section 14.1)
— [Old edition: 13.1 and 13.2]

» B-trees (Section 14.2)
— [Old edition: 13.3]

Magda Balazinska - CSE 444, Fall 2010 21

B+ Trees Basics

« Parameter d = the degree
» Each node has d <= m <= 2d keys (except root)

EINEENE

Keysk <30

Each node also
has m+1 pointers

Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

» Each leaf has d <= m <= 2d keys
EINEENE

.

Next leaf

B+ Trees
» Search trees

* Ideain B Trees
— Make 1 node = 1 block
— Keep tree balanced in height

* Ideain B+ Trees
— Make leaves into a linked list: facilitates range queries

Magda Balazinska - CSE 444, Fall 2010 22

B+ Tree Example
d=2

Find the key 40

4080

20440 60

|I0‘IS‘IB‘ 20‘30‘40‘50”60‘63‘ [Ise]ss]oo]]
| L DO T I T
30 <40 < 4
mim)miskn|n (o]
Magda Balazinska - CSE 444, Fall 2010 2

B+ Tree Design

* Howlarged ?
* Example:
— Key size = 4 bytes
— Pointer size = 8 bytes
— Block size = 4096 bytes
* 2dx4 +(2d+1)x8 <= 4096
« d=170

Magda Balazinska - CSE 444, Fall 2010

25

B+ Trees in Practice

Typical order: 100. Typical fill-factor: 67%
— average fanout = 133

Typical capacities

— Height 4: 1334 = 312,900,700 records

— Height 3: 1333 = 2,352,637 records

» Can often hold top levels in buffer pool

— Level 1= 1page = 8 Kbytes

— Level2= 133 pages = 1 Mbyte

— Level 3 = 17,689 pages = 133 Mbytes

Magda Balazinska - CSE 444, Fall 2010 27

Searching a B+ Tree

« Exact key values:

Select name
From people

— Start at the root
— Proceed down, to the leaf

Where age = 25

* Range queries:

Select name
From people

— As above
— Then sequential traversal

Where 20 <= age

and age <= 30

Magda Balazinska - CSE 444, Fall 2010

26

Insertion in a B+ Tree

Insert (K, P)
« Find leaf where K belongs, insert
« If no overflow (2d keys or less), halt

« If overflow (2d+1 keys), split node, insert in parent:
parent parent
K3

[ki [ra] k3 [ka] ks | [& Jra]] [ka Jxs[]

[olPiT e s [palps| = |po[pi[p2] [[[ps]Pa]0ps]

« If leaf, keep K3 too in right node
« When root splits, new root has 1 key only

Magda Balazinska - CSE 444, Fall 2010 28

Insertion in a B+ Tree
Insert K=19

El
20 | 60 100 | 120 | 140

[T \\

0‘30‘40‘50”50 65‘ ||80‘8€‘90‘ |
LT \

TNNE NN H—I/H

NN

0
Magda Balazinska - CSE 444, Fall 2010

29

Insertion in a B+ Tree

After insertion

|I0‘IS‘IB‘W| 20‘30‘40‘50”60‘63 |80‘Xi“)0‘ |

MENINE SR H—I/\ \

DR

Magda Balazinska - CSE 444, Fall 2010

30

11/2/10

Insertion in a B+ Tree

Now insert 25

% [D
\\\

||ED‘8€“)O‘

n 1“I8‘19| ”0‘30‘40‘50”60‘65‘

u‘\‘\ \‘\‘ ‘Jr’l/‘

1
] \\

Magda Ea\az\nska CSE 444 Fall 2010

Insertion in a B+ Tree

After insertion

\\\

||BO‘85‘90‘

[0 ssTas o] [20]2s ‘10‘40‘50 |I\D‘65‘
[

P [H

\
ﬂ.\.»LHé 2

Magda Balazinska - CSE 444, Fall 2010 32

Insertion in a B+ Tree

But now have to split !

20 | 60 100 | 120 | 140

|Iﬂ‘1“l8‘19| 70‘25‘%0‘40‘50 [0 6s]

L H

LLL»&LLLMLM ; 4

Magda Balazinska - CSE 444, Fall 2010

|80‘8>“)0‘

Insertion in a B+ Tree
After the split

|30‘35‘9n‘

015 18] o] [20]2s |30‘40‘50‘ "r» [65
Aol il [b0+

Magda Balazinska - CSE 444, Fall 2010

Deletion from a B+ Tree
Delete 30

\ \\

|Iﬂ‘1“l8‘19 |2‘25‘ ||3n‘40‘io‘ |(» s |80‘8>‘90‘

MENINES R \\ [L

|

agda Balazinska - CSE 444, Fall 2010

Deletion from a B+ Tree
After deleting 30

0]is[is]1o] [20]2s |40‘50‘ "60‘65‘

[l £ \LM % é

Magda Balazinska - CSE 444, Fall 2010

|30‘35‘9n‘

11/2/10

Deletion from a B+ Tree
Now delete 25

=

Magda Balazinska - CSE 444, Fall 2010 37

Deletion from a B+ Tree

After deleting 25
Need to rebalance
Rotate

\\

]isTis]io] [20 [ao]s0]] "60‘65‘ |30‘35‘9n‘

[
LL [18][19][20] [«0] Eﬂééé

Magda Balazinska - CSE 444, Fall 2010

Deletion from a B+ Tree
Now delete 40

\\»

|4n‘>0‘ "60‘65‘ |80‘8>‘90‘

4\\huh4;4

Magda Balazinska - CSE 444, Fall 2010

|Iﬂ‘1“l8‘ |0‘zo‘ ‘

;

LT

Deletion from a B+ Tree

After deleting 40
Rotation not possible
Need to merge nodes

100 | 120 | 140

10 [1s] 18 ;_19 20 o] 1] 60‘65‘ |30‘35‘9n‘
Aol \ [WE TS

ol ><aumgza

Magda Balazinska - CSE 444, Fall 2010

Deletion from a B+ Tree

Final tree

\\»

|80‘8>‘90‘

m 1“I8‘

L] H

Magda Balazinska - CSE 444, Fa\l 2010

Summary of B+ Trees

« Default index structure on most DBMS

» Very effective at answering ‘point’ queries:
productName = ‘gizmo’

« Effective for range queries:
50 < price AND price < 100
« Less effective for multirange:
50 < price < 100 AND 2 < quant < 20

Magda Balazinska - CSE 444, Fall 2010 42

11/2/10

11/2/10

Indexes in PostgreSQL

‘CREATE TABLE V(M int, N varchar(20), P int);

[CREATE INDEX VI_N ON V(N)

[CREATE INDEX V2 ON V(P, M)

[CREATE INDEX VVV ON V(M,N) |

Makes V2 clustered

Magda Balazinska - CSE 444, Fall 2010 43

‘ CLUSTER V USING V2

