Introduction to Database Systems CSE 444

Lecture 18: Relational Algebra

Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators

The WHAT and the HOW

 In SQL, we write WHAT we want to get from the data

- The database system needs to figure out HOW to get the data we want
- The passage from WHAT to HOW goes through the Relational Algebra

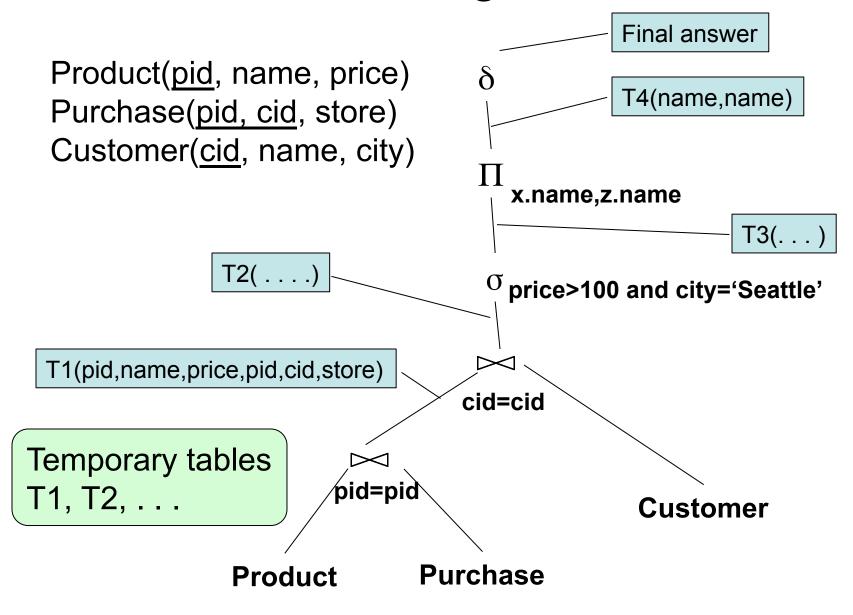
SQL = WHAT

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = z.cid and
x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

Relational Algebra = HOW



Relational Algebra = HOW

The order is now clearly specified:

- Iterate over PRODUCT...
- …join with PURCHASE…
- ...join with CUSTOMER...
- ...select tuples with Price>100 and City='Seattle'...
- ...eliminate duplicates...
- ...and that's the final answer!

Relations

- A relation is a set of tuples
 - Sets: {a,b,c}, {a,d,e,f}, { }, . . .
- But, commercial DBMS's implement relations that are bags rather than sets
 - Bags: {a, a, b, c}, {b, b, b, b, b}, . . .

Sets v.s. Bags

Relational Algebra has two flavors:

- Over sets: theoretically elegant but limited
- Over bags: needed for SQL queries + more efficient
 - Example: Compute average price of all products

We discuss set semantics

We mention bag semantics only where needed

Outline

- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators

Relational Algebra

Query language associated with relational model

- Queries specified in an operational manner
 - A query gives a step-by-step procedure

Relational operators

- Take one or two relation instances as argument
- Return one relation instance as result
- Easy to compose into relational algebra expressions

Relational Algebra (1/3)

Five basic operators:

- Union (∪) and Set difference (–)
- Selection: : $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (A,V) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >
- Projection: $\pi_{list-of-attributes}(S)$
- Cross-product or cartesian product (x)

Relational Algebra (2/3)

Derived or auxiliary operators:

- Intersection (∩), Division (R/S)
- Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- Variations of joins
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- Rename ρ _{B1,...,Bn} (S)

Relational Algebra (3/3)

Extensions for bags

- Duplicate elimination: δ
- Group by: γ [Same symbol as aggregation]
 - Partitions tuples of a relation into "groups"
- Sorting: τ

Other extensions

Aggregation: γ (min, max, sum, average, count)

Union and Difference

- R1 ∪ R2
- Example:
 - ActiveEmployees ∪ RetiredEmployees
- R1 R2
- Example:
 - AllEmployees RetiredEmployees

Be careful when applying to bags!

What about Intersection?

- It is a derived operator
- $R1 \cap R2 = R1 (R1 R2)$
- Also expressed as a join (will see later)
- Example
 - UnionizedEmployees ∩ RetiredEmployees

Relational Algebra (1/3)

Five basic operators:

- Union (∪) and Set difference (–)
- Selection: : $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (A,V) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >
- Projection: π_{list-of-attributes}(S)
- Cross-product or cartesian product (x)

Selection

- Returns all tuples that satisfy a condition
- Notation: $\sigma_c(R)$
- Examples
 - $-\sigma_{Salary > 40000}$ (Employee)
 - $\sigma_{\text{name = "Smith"}}$ (Employee)
- The condition c can be
 - Boolean combination (\(\lambda\), \(\nu\)) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, \neq , >=, or >

SSN	Name	Salary
1234545	John	200000
5423341	Smith	600000
4352342	Fred	500000

$\sigma_{\text{Salary} > 40000}$ (Employee)

SSN	Name	Salary
5423341	Smith	600000
4352342	Fred	500000

Projection

- Eliminates columns
- Notation: $\Pi_{A1...An}(R)$
- Example: project social-security number and names:
 - Π_{SSN, Name} (Employee)
 - Output schema: Answer(SSN, Name)

Semantics differs over set or over bags

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

$\Pi_{Name,Salary}$ (Employee)

Name	Salary
John	20000
John	60000

Set semantics: duplicate elimination automatic

SSN	Name	Salary
1234545	John	200000
5423341	John	600000
4352342	John	200000

 $\Pi_{Name,Salary}$ (Employee)

Name	Salary
John	20000
John	60000
John	20000

Selection & Projection Examples

Patient

no	name	zip	disease
1	p1	98125	flu
2	p2	98125	heart
3	р3	98120	lung
4	p4	98120	heart

$\pi_{zip,disease}(Patient)$

zip	disease
98125	flu
98125	heart
98120	lung
98120	heart

$$\sigma_{disease='heart'}(Patient)$$

no	name	zip	disease
2	p2	98125	heart
4	p4	98120	heart

$$\pi_{zip} (\sigma_{disease='heart'}(Patient))$$

zip	
98120	
98125	

Relational Algebra (1/3)

Five basic operators:

- Union (∪) and Set difference (–)
- Selection: : $\sigma_{\text{condition}}(S)$
 - Condition is Boolean combination (A,V) of terms
 - Term is: attribute op constant, attr. op attr.
 - Op is: <, <=, =, ≠, >=, or >
- Projection: π_{list-of-attributes}(S)
- Cross-product or cartesian product (x)

Cartesian Product

- Each tuple in R1 with each tuple in R2
- Notation: R1 × R2
- Example:
 - Employee × Dependents
- Rare in practice; mainly used to express joins

Cartesian Product Example

Employee

Name	SSN
John	99999999
Tony	77777777

Dependents

EmployeeSSN	Dname
99999999	Emily
77777777	Joe

Employee x Dependents

Name	SSN	EmployeeSSN	Dname
John	99999999	99999999	Emily
John	99999999	77777777	Joe
Tony	77777777	99999999	Emily
Tony	77777777	77777777	Joe

Relational Algebra (2/3)

Derived or auxiliary operators:

- Intersection (∩), Division (R/S)
- Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- Variations of joins
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- Rename ρ _{B1,...,Bn} (S)

Renaming

- Changes the schema, not the instance
- Notation: $\rho_{B1....Bn}$ (R)
- Example:
 - ρ_{LastName, SocSocNo} (Employee)
 - Output schema:Answer(LastName, SocSocNo)

Renaming Example

Employee

<u> </u>	
Name	SSN
John	99999999
Tony	7777777

ρ_{LastName, SocSocNo} (Employee)

LastName	SocSocNo
John	99999999
Tony	77777777

Relational Algebra (2/3)

Derived or auxiliary operators:

- Intersection (∩), Division (R/S)
- Join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
- Variations of joins
 - Natural, equijoin, theta-join
 - Outer join and semi-join
- Rename ρ _{B1,...,Bn} (S)

Different Types of Join

- Theta-join: $R \bowtie_{\theta} S = \sigma_{\theta}(R \times S)$
 - Join of R and S with a join condition θ
 - Cross-product followed by selection θ
- Equijoin: $R \bowtie_{\theta} S = \pi_A (\sigma_{\theta}(R \times S))$
 - Join condition θ consists only of equalities
 - Projection π_A drops all redundant attributes
- Natural join: $R \bowtie S = \pi_A (\sigma_\theta(R \times S))$
 - Equijoin
 - Equality on all fields with same name in R and in S

Theta-Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

P.age	P.zip	disease	job	J.age	J.zip
20	98120	flu	cashier	20	98120

Equijoin Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

$$P\bowtie_{P.age=J.age} J$$

age	P.zip	disease	job	J.zip
54	98125	heart	lawyer	98125
20	98120	flu	cashier	98120

Natural Join Example

AnonPatient P

age	zip	disease
54	98125	heart
20	98120	flu

AnnonJob J

job	age	zip
lawyer	54	98125
cashier	20	98120

$P \bowtie J$

age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier

So Which Join Is It?

 When we write R_⋈S we usually mean an equijoin, but we often omit the equality predicate when it is clear from the context

More Joins

Outer join

- Include tuples with no matches in the output
- Use NULL values for missing attributes

Variants

- Left outer join
- Right outer join
- Full outer join

Outer Join Example

AnonPatient P

age	zip	disease	
54	98125	heart	
20	98120	flu	
33	98120	lung	

P 🖄 V

AnnonJob J

job	age	zip	
lawyer	54	98125	
cashier	20	98120	

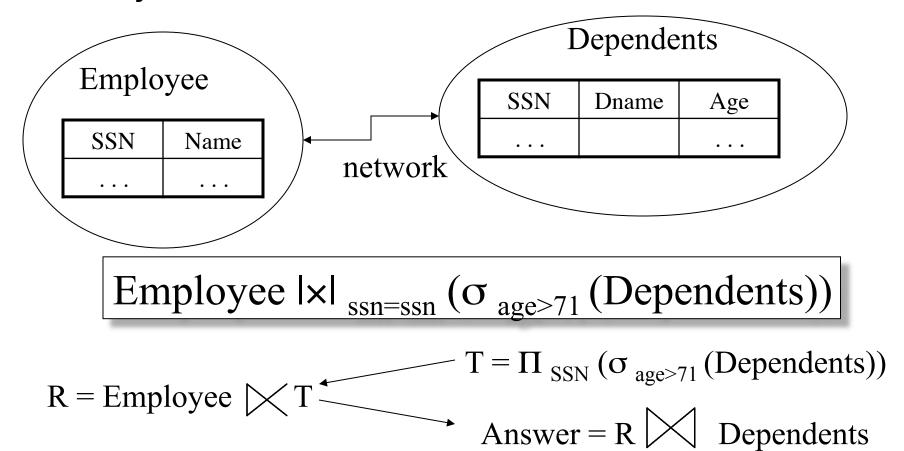
age	zip	disease	job
54	98125	heart	lawyer
20	98120	flu	cashier
33	98120	lung	null

Semijoin

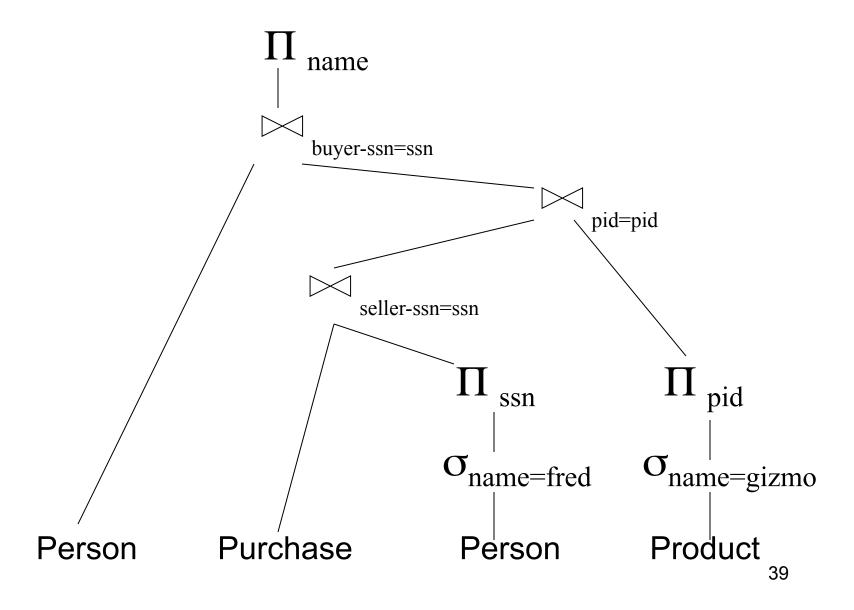
- $R_{\searrow}S = \prod_{A1,...,An} (R_{\bowtie}S)$
- Where A₁, ..., A_n are the attributes in R
- Example:
 - Employee_→ Dependents

Semijoins in Distributed Databases

Semijoins are used in distributed databases



Complex RA Expressions



Example of Algebra Queries

Q1: Jobs of patients who have heart disease $\pi_{\text{job}}(\text{AnnonJob}_{\bowtie} (\sigma_{\text{disease='heart'}}, (\text{AnonPatient}))$

More Examples

```
Supplier(sno,sname,scity,sstate)
Part(pno,pname,psize,pcolor)
Supply(sno,pno,qty,price)
```

Q2: Name of supplier of parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} (\sigma_{\text{psize}>10} \text{ (Part)})$

Q3: Name of supplier of red parts or parts with size greater than 10 $\pi_{\text{sname}}(\text{Supplier} \bowtie \text{Supply} \bowtie (\sigma_{\text{psize}>10} \ (\text{Part}) \cup \sigma_{\text{pcolor='red'}} \ (\text{Part}) \) \)$

RA Expressions v.s. Programs

- An Algebra Expression is like a program
 - Several operations
 - Strictly specified order
- But Algebra expressions have limitations

RA and Transitive Closure

Cannot compute "transitive closure"

Name1	Name2	Relationship
Fred	Mary	Father
Mary	Joe	Cousin
Mary	Bill	Spouse
Nancy	Lou	Sister

- Find all direct and indirect relatives of Fred
- Cannot express in RA !!! Need to write Java program

Outline

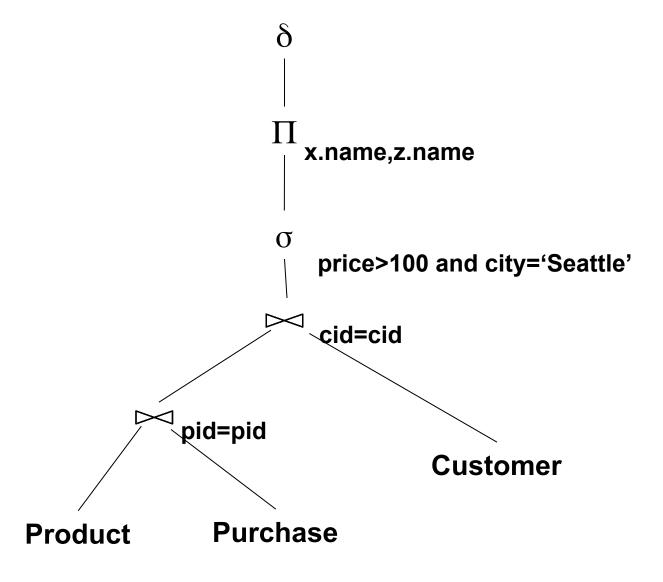
- Motivation and sets v.s. bags
- Relational Algebra
- Translation from SQL to the Relational Algebra
- Read Sections 2.4, 5.1, and 5.2
 - [Old edition: 5.1 through 5.4]
 - These book sections go over relational operators

From SQL to RA

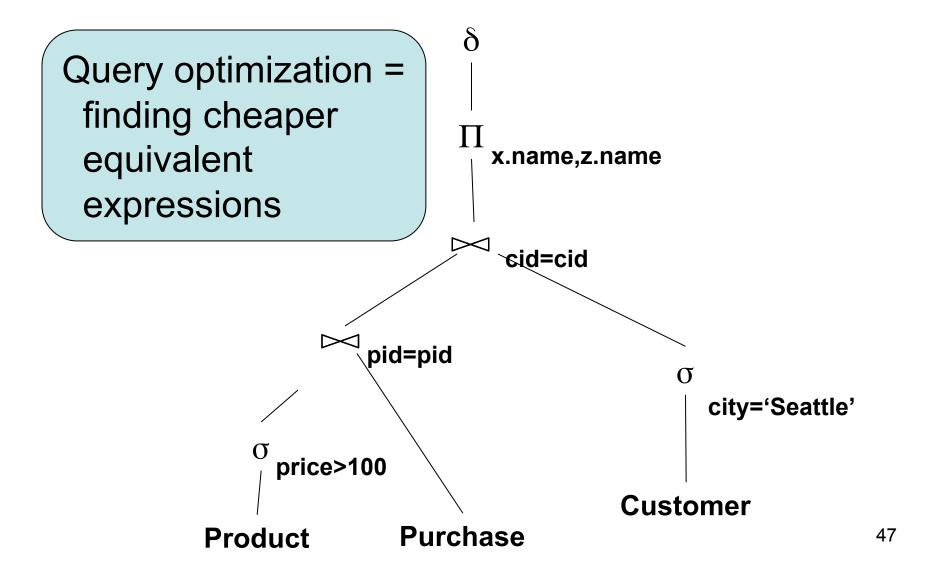
Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = 'Seattle'

From SQL to RA



An Equivalent Expression

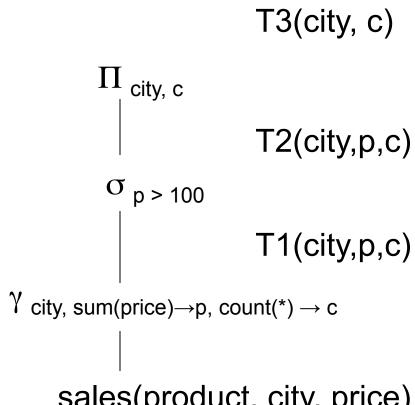


Operators on Bags

- Duplicate elimination δ
- Grouping γ
- Sorting τ

Logical Query Plan

SELECT city, count(*) **FROM** sales **GROUP BY city** HAVING sum(price) > 100



T1, T2, T3 = temporary tables

sales(product, city, price)

Non-monontone Queries (at home!)

```
Product(<u>pid</u>, name, price)
Purchase(<u>pid</u>, <u>cid</u>, store)
Customer(<u>cid</u>, name, city)
```

```
SELECT DISTINCT z.store
FROM Customer z
WHERE z.city='Seattle' AND
not exists (select *
from Product x, Purchase y
where x.pid= y.pid
and y.cid = z.cid
and x.price < 100)
```