Lecture 21:
 Query Optimization (1)

November 17, 2010

Where We Are

- We are learning how a DBMS executes a query
- What we learned so far
- How data is stored and indexed
- Logical query plans and physical operators
- This week:
- How to select logical \& physical query plans

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

Relational Algebra

$\pi_{\text {sname }}\left(\sigma_{\text {scity }=~ ' S e a t t l e ' ~} \wedge\right.$ sstate $=$ 'WA' \wedge pno=2 $\left(\right.$ Supplier $\varliminf_{\text {sid = sid }}$ Supply $\left.)\right)$

SELECT sname
FROM Supplier x, Supply y WHERE x .sid = y.sid and y.pno $=2$ and x .scity $=$ 'Seattle'
and x .sstate $={ }^{\prime} \mathrm{WA}{ }^{\prime}$

Give a relational algebra expression for this query

Key Idea: Algebraic Optimization

$$
N=\left(\left(z^{*} 2\right)+\left(\left(z^{*} 3\right)+y\right)\right) / x
$$

Given $\mathrm{x}=1, \mathrm{y}=0$, and $\mathrm{z}=4$, solve for N

What order did you perform the operations?

Key Idea: Algebraic Optimization

$$
N=\left(\left(z^{*} 2\right)+\left(\left(z^{*} 3\right)+0\right)\right) / 1
$$

Algebraic Laws:

$$
\begin{array}{ll}
\text { 1. }(+) \text { identity: } & x+0=x \\
\text { 2. (/) identity: } & x / 1=x \\
\text { 3. }\left(^{*}\right) \text { distributes: } & \left(n^{*} x+n^{*} y\right)=n^{*}(x+y) \\
\text { 4. }\left(^{*}\right) \text { commutes: } & x^{*} y=y^{*} x
\end{array}
$$

Apply rules 1, 3, 4, 2:
$N=(2+3)^{*} z$
two operations instead of five, no division operator

Query Optimization Goal

- For a query
- There exist many logical and physical query plans
- Query optimizer needs to pick a good one

Key Idea: Algebraic Optimization

$$
N=\left(\left(z^{*} 2\right)+\left(\left(z^{*} 3\right)+0\right)\right) / 1
$$

Given $\mathrm{x}=1, \mathrm{y}=0$, and $\mathrm{z}=4$, solve for N again, but now assume:

* costs 10 units
+ costs 2 units
/ costs 50 units
Which execution plan offers the lowest cost?
Bill Howe -- 444 Fall 2010

Supplier(sid, sname, scity, sstate)

Supply(sid, pno, quantity)

SELECT sname

FROM Supplier x, Supply y
WHERE $\mathrm{x} . \mathrm{sid}=\mathrm{y} . \mathrm{sid}$
and y.pno $=2$
and x .scity $=$ 'Seattle'
and x .sstate $=$ ' WA '
$\pi_{\text {sname }}\left(\sigma_{\text {scity }}=\right.$ 'Seattle' \wedge sstate $=$ 'WA' \wedge pno $=2\left(\right.$ Supplier $\bigotimes_{\text {sid }=\text { sid }}$ Supply $\left.)\right)$

Give a different relational algebra expression for this query

Example

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- T (Supply) $=10,000$ records
$-B($ Supplier $)=100$ pages
- B (Supply) $=100$ pages
- $\mathrm{V}($ Supplier,scity $)=20, \mathrm{~V}($ Supplier,state $)=10$
- V(Supply,pno) $=2,500$
- Both relations are clustered
- $M=10$

SELECT sname FROM Supplier x, Supply y WHERE x. sid $=\mathrm{y}$.sid and y.pno $=2$ and $x . s c i t y=$ 'Seattle' and x .sstate $=$ ' WA '

Query Optimization Goal

- For a query
- There exist many logical and physical query plans
- Query optimizer needs to pick a good one

How do we choose a good one?

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Query Optimization Algorithm

- Enumerate alternative plans
- Compute estimated cost of each plan
- Compute number of I/Os
- Compute CPU cost
- Choose plan with lowest cost
- This is called cost-based optimization

Lessons

- Need to consider several physical plan - even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- need to have statistics over the data
- the B's, the T's, the V's

Relational Algebra Equivalences

- Selections
- Commutative: $\sigma_{c 1}\left(\sigma_{c 2}(R)\right)$ same as $\sigma_{c 2}\left(\sigma_{c 1}(R)\right)$
- Cascading: $\sigma_{\mathrm{c} 1 \mathrm{c} 2}(R)$ same as $\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(R)\right)$
- Projections
- Joins
- Commutative : $R \bowtie S$ same as $S \bowtie R$
- Associative: $R \bowtie(S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Commutativity, Associativity, Distributivity

$R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T$ $R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$ $R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T$
$R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$

Outline

- Search space (Today)
- Algorithm for enumerating query plans
- Estimating the cost of a query plan

Example

Which plan is more efficient ? $R \bowtie(S \bowtie T)$ or $(R \bowtie S) \bowtie T ?$

- Assumptions:
- Every join selectivity is 10\%
- That is: $T(R \bowtie S)=0.1 * T(R) * T(S)$ etc.
$-B(R)=100, B(S)=50, B(T)=500$
- All joins are main memory joins
- All intermediate results are materialized

Laws involving selection:

```
\mp@subsup{\sigma}{CAND C'}{\prime}
\sigma CORC'
\mp@subsup{\sigma}{C}{}}(R\bowtieS)=\mp@subsup{\sigma}{c}{c}(R)\bowtie
```

When C involves
$\sigma_{c}(R-S)=\sigma_{c}(R)-S$
$\sigma_{c}(R \cup S)=\sigma_{c}(R) \cup \sigma_{C}(S)$
$\sigma_{c}(R \bowtie S)=\sigma_{C}(R) \bowtie S$

Laws Involving Projections

$\Pi_{M}(R \bowtie S)=\Pi_{M}\left(\Pi_{P}(R) \bowtie \Pi_{Q}(S)\right)$
$\Pi_{M}\left(\Pi_{N}(R)\right)=\Pi_{M}(R)$
/* note that $\mathrm{M} \subseteq \mathrm{N}$ */

- Example R(A,B,C,D), S(E, F, G)
$\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{G}}\left(\mathrm{R} \bowtie_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R}) \bowtie_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)$

Laws Involving Constraints

Need a second constraint for this law to hold. Which one?

Laws Involving Projections	
$\begin{aligned} & \Pi_{\mathrm{M}}(\mathrm{R} \bowtie \mathrm{~S})=\Pi_{\mathrm{M}}\left(\Pi_{\mathrm{P}}(\mathrm{R}) \bowtie \Pi_{\mathrm{Q}}(\mathrm{~S})\right) \\ & \Pi_{\mathrm{M}}\left(\Pi_{\mathrm{N}}(\mathrm{R})\right)=\Pi_{\mathrm{M}}(\mathrm{R}) \\ & { }^{*} \text { note that } \mathrm{M} \subseteq \mathrm{~N} * / \end{aligned}$	
- Example R(A,B,C,D), S(E, F, G) $\Pi_{\mathrm{A}, \mathrm{B}, \mathrm{G}}\left(\mathrm{R} \bowtie_{\mathrm{D}=\mathrm{E}} \mathrm{S}\right)=\Pi_{?}\left(\Pi_{?}(\mathrm{R}) \bowtie_{\mathrm{D}=\mathrm{E}} \Pi_{?}(\mathrm{~S})\right)$	
${ }^{10} 1$ Howe - 444 Fall 2010	${ }^{27}$

Example: Simple Algebraic Laws

- Example: R(A, B, C, D), S(E, F, G)
$\sigma_{F=3}\left(R \bowtie \bowtie_{D=E} S\right)=?$
$\sigma_{A=5 ~ A N D G=9}\left(R \bowtie_{D=E} S\right)=?$

Laws involving grouping and aggregation
 $\delta\left(\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})\right)=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})$
 $\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\delta(\mathrm{R}))=\gamma_{\mathrm{A}, \operatorname{agg}(\mathrm{B})}(\mathrm{R})$
 if agg is "duplicate insensitive"

Which of the following are "duplicate insensitive" ? sum, count, avg, min, max
$\gamma_{\mathrm{A}, \mathrm{agg}(\mathrm{D})}\left(\mathrm{R}(\mathrm{A}, \mathrm{B}) \bowtie_{\mathrm{B}=\mathrm{C}} \mathrm{S}(\mathrm{C}, \mathrm{D})\right)=$
$\gamma_{A, a g g(D)}\left(R(A, B) \bowtie_{B=C}\left(\gamma_{C, a g g(D)} S(C, D)\right)\right)$
Bill Howe -- 444 Fall 2010

Laws with Semijoins

Recall the definition of a semijoin:

- $R \ltimes S=\Pi_{A 1, \ldots, A_{n}}(R \bowtie S)$
- Where the schemas are:
- Input: R(A1,...An), S(B1,..,Bm)
- Output: T(A1,...,An)

Laws with Semijoins

- Example:

$$
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

- A reducer is:
$\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{A}, \mathrm{B}) \ltimes \mathrm{S}(\mathrm{B}, \mathrm{C})$
- The rewritten query is:

$$
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

Laws with Semijoins

- Example:

$$
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

- A reducer is:

$$
\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \propto \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

- The rewritten query is:

$$
\mathrm{Q}=\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

Laws with Semijoins

Semijoins: a bit of theory (see Database Theory, AHV)

- Given a query: $\quad Q=R_{1} \bowtie R_{2} \bowtie \ldots \bowtie R_{n}$
- A semijoin reducer for Q is $R_{i 1}=R_{i 1} \ltimes R_{j 1}$
$R_{i 2}=R_{i 2} \ltimes R_{j 2}$
$\ldots \ldots=R_{i p} \ltimes R_{i p}$
$R_{i p}=$
such that the query is equivalent to:
$Q=R_{k 1} \bowtie R_{k 2} \bowtie \ldots \bowtie R_{k n}$
- A full reducer is such that no dangling tuples remain

Why Would We Do This ?

- Large attributes:

$$
Q=R(A, B, D, E, F, \ldots) \bowtie S(B, C, M, K, L, \ldots)
$$

- Expensive side computations

$\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{D})=\mathrm{R}(\mathrm{A}, \mathrm{B}, \mathrm{D}) \propto \sigma_{\mathrm{C}=\text { value }}(\mathrm{S}(\mathrm{B}, \mathrm{C}))$
$Q=\gamma_{A, B, \text { count }}{ }^{\circ} R_{1}(A, B, D) \bowtie \sigma_{C=\text { value }}(S(B, C))$

Laws with Semijoins

- Example:

$$
\mathrm{Q}=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \bowtie \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

- A full reducer is:

$$
\mathrm{R}_{1}(\mathrm{~A}, \mathrm{~B})=\mathrm{R}(\mathrm{~A}, \mathrm{~B}) \ltimes \mathrm{S}(\mathrm{~B}, \mathrm{C})
$$

$$
S_{1}(B, C)=S(B, C) \ltimes R_{1}(A, B)
$$

- The rewritten query is:

$$
\frac{\text { Q :- } R_{1}(A, B) \bowtie S_{1}(B, C)}{\text { No more dangling tuples }}
$$

Laws with Semijoins

- More complex example:
$Q=R(A, B) \bowtie S(B, C) \bowtie T(C, D, E)$
- A full reducer is:
$S^{\prime}(B, C):=S(B, C) \propto R(A, B)$
$T^{\prime}(C, D, E):=T(C, D, E) \ltimes S(B, C)$
S^{\prime} ' $(B, C):=S^{\prime}(B, C) \ltimes T^{\prime}(C, D, E)$
$R^{\prime}(A, B):=R(A, B) \propto S^{\prime}(B, C)$
$Q=R^{\prime}(A, B) \bowtie S^{\prime}{ }^{\prime}(B, C) \bowtie T^{\prime}(C, D ; E)$

Laws with Semijoins

- Example:

$$
Q=R(A, B) \bowtie S(B, C) \bowtie T(A, C)
$$

- Doesn't have a full reducer (we can reduce forever)

Theorem a query has a full reducer iff it is "acyclic" [Database Theory, by Abiteboul, Hull, Vianu]

Example with Semijoins		
Emp(eid, ename, sal, did) Dept(did, dname, budget) DeptAvgSal(did, avgsal) /* view */		
View:	CREATE VIEW DepAvgSal As (SELECT E.did, Avg(E.Sa FROM Emp E GROUP BY E.did)	
Query:	SELECT E.eid, E.sal FROM Emp E, Dept D, DepAvgS WHERE E.did = D.did AND E.did AND E.age < 30 AND D. AND E.sal > V.avgsal	
Goal: compute only the necessary part of the view 39		

Example with Semijoins

Emp(eid, ename, sal, did)
[Chaudhuri' 98]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

New view
uses a reducer:
CREATE VIEW LimitedAvgSal As (SELECT E.did, Avg(E.Sal) AS avgsal FROM Emp E, Dept D WHERE E.did = D.did AND D.buget $>100 \mathrm{k}$ GROUP BY E.did)

New query:

SELECT E.eid, E.sal
FROM Emp E, Dept D, LimitedAvgSal V WHERE E.did = D.did AND E.did = V.did AND E.age < 30 AND D.budget > 100k AND E.sal > V.avgsal

Example with Semijoins

Emp(eid, ename, sal, did)
Dept(did, dname, budget) [Chaudhuri' 98]
DeptAvgSal(did, avgsal) /* view */
CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM Emp E, Dept D
WHERE E.did=D.did AND E.age < 30
AND D.budget > 100k)
CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)
CREATE VIEW LimitedAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM Emp E, Filter F
WHERE E.did = F.did GROUP BY E.did)

Example with Semijoins

New query:

SELECT P.eid, P.sal
FROM PartialResult P, LimitedDepAvgSal V WHERE P.did = V.did AND P.sal > V.avgsal

Search Space Challenges

- Search space is huge!
- Many possible equivalent trees
- Many implementations for each operator
- Many access paths for each relation
- File scan or index + matching selection condition
- Cannot consider ALL plans
- Heuristics: only partial plans with "low" cost

